Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: Passenger.java   Sprache: Isabelle

(*  Title:      HOL/Library/Permutation.thy
    Author:     Lawrence C Paulson and Thomas M Rasmussen and Norbert Voelker
*)


section \<open>Permutations\<close>

theory Permutation
imports Multiset
begin

inductive perm :: "'a list \ 'a list \ bool" (infixr \<~~>\ 50)
where
  Nil [intro!]: "[] <~~> []"
| swap [intro!]: "y # x # l <~~> x # y # l"
| Cons [intro!]: "xs <~~> ys \ z # xs <~~> z # ys"
| trans [intro]: "xs <~~> ys \ ys <~~> zs \ xs <~~> zs"

proposition perm_refl [iff]: "l <~~> l"
  by (induct l) auto


subsection \<open>Some examples of rule induction on permutations\<close>

proposition perm_empty_imp: "[] <~~> ys \ ys = []"
  by (induction "[] :: 'a list" ys pred: perm) simp_all


text \<open>\medskip This more general theorem is easier to understand!\<close>

proposition perm_length: "xs <~~> ys \ length xs = length ys"
  by (induct pred: perm) simp_all

proposition perm_sym: "xs <~~> ys \ ys <~~> xs"
  by (induct pred: perm) auto


subsection \<open>Ways of making new permutations\<close>

text \<open>We can insert the head anywhere in the list.\<close>

proposition perm_append_Cons: "a # xs @ ys <~~> xs @ a # ys"
  by (induct xs) auto

proposition perm_append_swap: "xs @ ys <~~> ys @ xs"
  by (induct xs) (auto intro: perm_append_Cons)

proposition perm_append_single: "a # xs <~~> xs @ [a]"
  by (rule perm.trans [OF _ perm_append_swap]) simp

proposition perm_rev: "rev xs <~~> xs"
  by (induct xs) (auto intro!: perm_append_single intro: perm_sym)

proposition perm_append1: "xs <~~> ys \ l @ xs <~~> l @ ys"
  by (induct l) auto

proposition perm_append2: "xs <~~> ys \ xs @ l <~~> ys @ l"
  by (blast intro!: perm_append_swap perm_append1)


subsection \<open>Further results\<close>

proposition perm_empty [iff]: "[] <~~> xs \ xs = []"
  by (blast intro: perm_empty_imp)

proposition perm_empty2 [iff]: "xs <~~> [] \ xs = []"
  using perm_sym by auto

proposition perm_sing_imp: "ys <~~> xs \ xs = [y] \ ys = [y]"
  by (induct pred: perm) auto

proposition perm_sing_eq [iff]: "ys <~~> [y] \ ys = [y]"
  by (blast intro: perm_sing_imp)

proposition perm_sing_eq2 [iff]: "[y] <~~> ys \ ys = [y]"
  by (blast dest: perm_sym)


subsection \<open>Removing elements\<close>

proposition perm_remove: "x \ set ys \ ys <~~> x # remove1 x ys"
  by (induct ys) auto


text \<open>\medskip Congruence rule\<close>

proposition perm_remove_perm: "xs <~~> ys \ remove1 z xs <~~> remove1 z ys"
  by (induct pred: perm) auto

proposition remove_hd [simp]: "remove1 z (z # xs) = xs"
  by auto

proposition cons_perm_imp_perm: "z # xs <~~> z # ys \ xs <~~> ys"
  by (drule perm_remove_perm [where z = z]) auto

proposition cons_perm_eq [iff]: "z#xs <~~> z#ys \ xs <~~> ys"
  by (meson cons_perm_imp_perm perm.Cons)

proposition append_perm_imp_perm: "zs @ xs <~~> zs @ ys \ xs <~~> ys"
  by (induct zs arbitrary: xs ys rule: rev_induct) auto

proposition perm_append1_eq [iff]: "zs @ xs <~~> zs @ ys \ xs <~~> ys"
  by (blast intro: append_perm_imp_perm perm_append1)

proposition perm_append2_eq [iff]: "xs @ zs <~~> ys @ zs \ xs <~~> ys"
  by (meson perm.trans perm_append1_eq perm_append_swap)

theorem mset_eq_perm: "mset xs = mset ys \ xs <~~> ys"
proof
  assume "mset xs = mset ys"
  then show "xs <~~> ys"
  proof (induction xs arbitrary: ys)
    case (Cons x xs)
    then have "x \ set ys"
      using mset_eq_setD by fastforce
    then show ?case
      by (metis Cons.IH Cons.prems mset_remove1 perm.Cons perm.trans perm_remove perm_sym remove_hd)
  qed auto
next
  assume "xs <~~> ys"
  then show "mset xs = mset ys"
    by induction (simp_all add: union_ac)
qed

proposition mset_le_perm_append: "mset xs \# mset ys \ (\zs. xs @ zs <~~> ys)"
  apply (rule iffI)
  apply (metis mset_append mset_eq_perm mset_subset_eq_exists_conv surjD surj_mset)
  by (metis mset_append mset_eq_perm mset_subset_eq_exists_conv)

proposition perm_set_eq: "xs <~~> ys \ set xs = set ys"
  by (metis mset_eq_perm mset_eq_setD)

proposition perm_distinct_iff: "xs <~~> ys \ distinct xs = distinct ys"
  by (metis card_distinct distinct_card perm_length perm_set_eq)

theorem eq_set_perm_remdups: "set xs = set ys \ remdups xs <~~> remdups ys"
proof (induction xs arbitrary: ys rule: length_induct)
  case (1 xs)
  show ?case
  proof (cases "remdups xs")
    case Nil
    with "1.prems" show ?thesis
      using "1.prems" by auto
  next
    case (Cons x us)
    then have "x \ set (remdups ys)"
      using "1.prems" set_remdups by fastforce
    then show ?thesis
      using "1.prems" mset_eq_perm set_eq_iff_mset_remdups_eq by blast
  qed
qed 

proposition perm_remdups_iff_eq_set: "remdups x <~~> remdups y \ set x = set y"
  by (metis List.set_remdups perm_set_eq eq_set_perm_remdups)

theorem permutation_Ex_bij:
  assumes "xs <~~> ys"
  shows "\f. bij_betw f {.. (\i
  using assms
proof induct
  case Nil
  then show ?case
    unfolding bij_betw_def by simp
next
  case (swap y x l)
  show ?case
  proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI)
    show "bij_betw (Fun.swap 0 1 id) {..
      by (auto simp: bij_betw_def)
    fix i
    assume "i < length (y # x # l)"
    show "(y # x # l) ! i = (x # y # l) ! (Fun.swap 0 1 id) i"
      by (cases i) (auto simp: Fun.swap_def gr0_conv_Suc)
  qed
next
  case (Cons xs ys z)
  then obtain f where bij: "bij_betw f {..
    and perm: "\i
    by blast
  let ?f = "\i. case i of Suc n \ Suc (f n) | 0 \ 0"
  show ?case
  proof (intro exI[of _ ?f] allI conjI impI)
    have *: "{.. Suc ` {..
            "{.. Suc ` {..
      by (simp_all add: lessThan_Suc_eq_insert_0)
    show "bij_betw ?f {..
      unfolding *
    proof (rule bij_betw_combine)
      show "bij_betw ?f (Suc ` {..
        using bij unfolding bij_betw_def
        by (auto intro!: inj_onI imageI dest: inj_onD simp: image_comp comp_def)
    qed (auto simp: bij_betw_def)
    fix i
    assume "i < length (z # xs)"
    then show "(z # xs) ! i = (z # ys) ! (?f i)"
      using perm by (cases i) auto
  qed
next
  case (trans xs ys zs)
  then obtain f g
    where bij: "bij_betw f {.. "bij_betw g {..
    and perm: "\ii
    by blast
  show ?case
  proof (intro exI[of _ "g \ f"] conjI allI impI)
    show "bij_betw (g \ f) {..
      using bij by (rule bij_betw_trans)
    fix i
    assume "i < length xs"
    with bij have "f i < length ys"
      unfolding bij_betw_def by force
    with \<open>i < length xs\<close> show "xs ! i = zs ! (g \<circ> f) i"
      using trans(1,3)[THEN perm_length] perm by auto
  qed
qed

proposition perm_finite: "finite {B. B <~~> A}"
proof (rule finite_subset[where B="{xs. set xs \ set A \ length xs \ length A}"])
 show "finite {xs. set xs \ set A \ length xs \ length A}"
   using finite_lists_length_le by blast
next
 show "{B. B <~~> A} \ {xs. set xs \ set A \ length xs \ length A}"
   by (clarsimp simp add: perm_length perm_set_eq)
qed

proposition perm_swap:
    assumes "i < length xs" "j < length xs"
    shows "xs[i := xs ! j, j := xs ! i] <~~> xs"
  using assms by (simp add: mset_eq_perm[symmetric] mset_swap)

end

[ Seitenstruktur0.23Drucken  etwas mehr zur Ethik  ]

                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....
    

Besucherstatistik

Besucherstatistik