(* Title: HOL/Tools/BNF/bnf_gfp.ML
Author: Dmitriy Traytel, TU Muenchen
Author: Andrei Popescu, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
Copyright 2012
Codatatype construction.
*)
signature BNF_GFP =
sig
val construct_gfp: mixfix list -> binding list -> binding list -> binding list ->
binding list list -> binding list -> (string * sort) list -> typ list * typ list list ->
BNF_Def.bnf list -> BNF_Comp.absT_info list -> local_theory ->
BNF_FP_Util.fp_result * local_theory
end;
structure BNF_GFP : BNF_GFP =
struct
open BNF_Def
open BNF_Util
open BNF_Tactics
open BNF_Comp
open BNF_FP_Util
open BNF_FP_Def_Sugar
open BNF_GFP_Util
open BNF_GFP_Tactics
datatype wit_tree = Wit_Leaf of int | Wit_Node of (int * int * int list) * wit_tree list;
fun mk_tree_args (I, T) (I', Ts) = (sort_distinct int_ord (I @ I'), T :: Ts);
fun finish Iss m seen i (nwit, I) =
let
val treess = map (fn j =>
if j < m orelse member (op =) seen j then [([j], Wit_Leaf j)]
else
map_index (finish Iss m (insert (op =) j seen) j) (nth Iss (j - m))
|> flat
|> minimize_wits)
I;
in
map (fn (I, t) => (I, Wit_Node ((i - m, nwit, filter (fn i => i < m) I), t)))
(fold_rev (map_product mk_tree_args) treess [([], [])])
|> minimize_wits
end;
fun tree_to_ctor_wit vars _ _ (Wit_Leaf j) = ([j], nth vars j)
| tree_to_ctor_wit vars ctors witss (Wit_Node ((i, nwit, I), subtrees)) =
(I, nth ctors i $ (Term.list_comb (snd (nth (nth witss i) nwit),
map (snd o tree_to_ctor_wit vars ctors witss) subtrees)));
fun tree_to_coind_wits _ (Wit_Leaf _) = []
| tree_to_coind_wits lwitss (Wit_Node ((i, nwit, I), subtrees)) =
((i, I), nth (nth lwitss i) nwit) :: maps (tree_to_coind_wits lwitss) subtrees;
(*all BNFs have the same lives*)
fun construct_gfp mixfixes map_bs rel_bs pred_bs set_bss0 bs resBs (resDs, Dss) bnfs absT_infos
lthy =
let
val time = time lthy;
val timer = time (Timer.startRealTimer ());
val live = live_of_bnf (hd bnfs);
val n = length bnfs; (*active*)
val ks = 1 upto n;
val m = live - n; (*passive, if 0 don't generate a new BNF*)
val ls = 1 upto m;
val internals = Config.get lthy bnf_internals;
val b_names = map Binding.name_of bs;
val b_name = mk_common_name b_names;
val b = Binding.name b_name;
fun mk_internal_of_b name =
Binding.prefix_name (name ^ "_") #> Binding.prefix true b_name #> Binding.concealed;
fun mk_internal_b name = mk_internal_of_b name b;
fun mk_internal_bs name = map (mk_internal_of_b name) bs;
val external_bs = map2 (Binding.prefix false) b_names bs
|> not internals ? map Binding.concealed;
val deads = fold (union (op =)) Dss resDs;
val names_lthy = fold Variable.declare_typ deads lthy;
val passives = map fst (subtract (op = o apsnd TFree) deads resBs);
(* tvars *)
val ((((((passiveAs, activeAs), passiveBs), activeBs), passiveCs), activeCs), idxT) = names_lthy
|> variant_tfrees passives
||>> mk_TFrees n
||>> variant_tfrees passives
||>> mk_TFrees n
||>> mk_TFrees m
||>> mk_TFrees n
||> fst o mk_TFrees 1
||> the_single;
val allAs = passiveAs @ activeAs;
val allBs' = passiveBs @ activeBs;
val Ass = replicate n allAs;
val allBs = passiveAs @ activeBs;
val Bss = replicate n allBs;
val allCs = passiveAs @ activeCs;
val allCs' = passiveBs @ activeCs;
val Css' = replicate n allCs';
(* types *)
val dead_poss =
map (fn x => if member (op =) deads (TFree x) then SOME (TFree x) else NONE) resBs;
fun mk_param NONE passive = (hd passive, tl passive)
| mk_param (SOME a) passive = (a, passive);
val mk_params = fold_map mk_param dead_poss #> fst;
fun mk_FTs Ts = map2 (fn Ds => mk_T_of_bnf Ds Ts) Dss bnfs;
val (params, params') = `(map Term.dest_TFree) (mk_params passiveAs);
val FTsAs = mk_FTs allAs;
val FTsBs = mk_FTs allBs;
val FTsCs = mk_FTs allCs;
val ATs = map HOLogic.mk_setT passiveAs;
val BTs = map HOLogic.mk_setT activeAs;
val B'Ts = map HOLogic.mk_setT activeBs;
val B''Ts = map HOLogic.mk_setT activeCs;
val sTs = map2 (fn T => fn U => T --> U) activeAs FTsAs;
val s'Ts = map2 (fn T => fn U => T --> U) activeBs FTsBs;
val s''Ts = map2 (fn T => fn U => T --> U) activeCs FTsCs;
val fTs = map2 (fn T => fn U => T --> U) activeAs activeBs;
val self_fTs = map (fn T => T --> T) activeAs;
val gTs = map2 (fn T => fn U => T --> U) activeBs activeCs;
val all_gTs = map2 (fn T => fn U => T --> U) allBs allCs';
val RTs = map2 (fn T => fn U => HOLogic.mk_prodT (T, U)) activeAs activeBs;
val sRTs = map2 (fn T => fn U => HOLogic.mk_prodT (T, U)) activeAs activeAs;
val R'Ts = map2 (fn T => fn U => HOLogic.mk_prodT (T, U)) activeBs activeCs;
val setsRTs = map HOLogic.mk_setT sRTs;
val setRTs = map HOLogic.mk_setT RTs;
val all_sbisT = HOLogic.mk_tupleT setsRTs;
val setR'Ts = map HOLogic.mk_setT R'Ts;
val FRTs = mk_FTs (passiveAs @ RTs);
(* terms *)
val mapsAsAs = @{map 4} mk_map_of_bnf Dss Ass Ass bnfs;
val mapsAsBs = @{map 4} mk_map_of_bnf Dss Ass Bss bnfs;
val mapsBsCs' = @{map 4} mk_map_of_bnf Dss Bss Css' bnfs;
val mapsAsCs' = @{map 4} mk_map_of_bnf Dss Ass Css' bnfs;
val map_fsts = @{map 4} mk_map_of_bnf Dss (replicate n (passiveAs @ RTs)) Ass bnfs;
val map_snds = @{map 4} mk_map_of_bnf Dss (replicate n (passiveAs @ RTs)) Bss bnfs;
fun mk_setss Ts = @{map 3} mk_sets_of_bnf (map (replicate live) Dss)
(map (replicate live) (replicate n Ts)) bnfs;
val setssAs = mk_setss allAs;
val setssAs' = transpose setssAs;
val bis_setss = mk_setss (passiveAs @ RTs);
val relsAsBs = @{map 4} mk_rel_of_bnf Dss Ass Bss bnfs;
val bds = @{map 3} mk_bd_of_bnf Dss Ass bnfs;
val sum_bd = Library.foldr1 (uncurry mk_csum) bds;
val sum_bdT = fst (dest_relT (fastype_of sum_bd));
val (sum_bdT_params, sum_bdT_params') = `(map TFree) (Term.add_tfreesT sum_bdT []);
val ((((((((((zs, zs'), Bs), ss), fs), self_fs), all_gs), xFs), yFs), yFs_copy), _) =
lthy
|> mk_Frees' "b" activeAs
||>> mk_Frees "B" BTs
||>> mk_Frees "s" sTs
||>> mk_Frees "f" fTs
||>> mk_Frees "f" self_fTs
||>> mk_Frees "g" all_gTs
||>> mk_Frees "x" FTsAs
||>> mk_Frees "y" FTsBs
||>> mk_Frees "y" FTsBs;
val passive_UNIVs = map HOLogic.mk_UNIV passiveAs;
val passive_eqs = map HOLogic.eq_const passiveAs;
val active_UNIVs = map HOLogic.mk_UNIV activeAs;
val passive_ids = map HOLogic.id_const passiveAs;
val active_ids = map HOLogic.id_const activeAs;
val fsts = map fst_const RTs;
val snds = map snd_const RTs;
(* thms *)
val bd_card_orders = map bd_card_order_of_bnf bnfs;
val bd_card_order = hd bd_card_orders
val bd_Card_orders = map bd_Card_order_of_bnf bnfs;
val bd_Card_order = hd bd_Card_orders;
val bd_Cinfinites = map bd_Cinfinite_of_bnf bnfs;
val bd_Cinfinite = hd bd_Cinfinites;
val in_monos = map in_mono_of_bnf bnfs;
val map_comp0s = map map_comp0_of_bnf bnfs;
val sym_map_comps = map mk_sym map_comp0s;
val map_comps = map map_comp_of_bnf bnfs;
val map_cong0s = map map_cong0_of_bnf bnfs;
val map_id0s = map map_id0_of_bnf bnfs;
val map_ids = map map_id_of_bnf bnfs;
val set_bdss = map set_bd_of_bnf bnfs;
val set_mapss = map set_map_of_bnf bnfs;
val rel_congs = map rel_cong0_of_bnf bnfs;
val rel_converseps = map rel_conversep_of_bnf bnfs;
val rel_Grps = map rel_Grp_of_bnf bnfs;
val le_rel_OOs = map le_rel_OO_of_bnf bnfs;
val in_rels = map in_rel_of_bnf bnfs;
val timer = time (timer "Extracted terms & thms");
(* derived thms *)
(*map g1 ... gm g(m+1) ... g(m+n) (map id ... id f(m+1) ... f(m+n) x) =
map g1 ... gm (g(m+1) o f(m+1)) ... (g(m+n) o f(m+n)) x*)
fun mk_map_comp_id x mapAsBs mapBsCs mapAsCs map_comp0 =
let
val lhs = Term.list_comb (mapBsCs, all_gs) $
(Term.list_comb (mapAsBs, passive_ids @ fs) $ x);
val rhs =
Term.list_comb (mapAsCs, take m all_gs @ map HOLogic.mk_comp (drop m all_gs ~~ fs)) $ x;
val goal = mk_Trueprop_eq (lhs, rhs);
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} => mk_map_comp_id_tac ctxt map_comp0)
|> Thm.close_derivation \<^here>
end;
val map_comp_id_thms = @{map 5} mk_map_comp_id xFs mapsAsBs mapsBsCs' mapsAsCs' map_comps;
(*forall a : set(m+1) x. f(m+1) a = a; ...; forall a : set(m+n) x. f(m+n) a = a ==>
map id ... id f(m+1) ... f(m+n) x = x*)
fun mk_map_cong0L x mapAsAs sets map_cong0 map_id =
let
fun mk_prem set f z z' =
HOLogic.mk_Trueprop
(mk_Ball (set $ x) (Term.absfree z' (HOLogic.mk_eq (f $ z, z))));
val prems = @{map 4} mk_prem (drop m sets) self_fs zs zs';
val goal = mk_Trueprop_eq (Term.list_comb (mapAsAs, passive_ids @ self_fs) $ x, x);
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, goal))
(fn {context = ctxt, prems = _} => mk_map_cong0L_tac ctxt m map_cong0 map_id)
|> Thm.close_derivation \<^here>
end;
val map_cong0L_thms = @{map 5} mk_map_cong0L xFs mapsAsAs setssAs map_cong0s map_ids;
val in_mono'_thms = map (fn thm =>
(thm OF (replicate m subset_refl)) RS @{thm set_mp}) in_monos;
val map_arg_cong_thms =
let
val prems = map2 (curry mk_Trueprop_eq) yFs yFs_copy;
val maps = map (fn mapx => Term.list_comb (mapx, all_gs)) mapsBsCs';
val concls =
@{map 3} (fn x => fn y => fn mapx => mk_Trueprop_eq (mapx $ x, mapx $ y))
yFs yFs_copy maps;
val goals = map2 (fn prem => fn concl => Logic.mk_implies (prem, concl)) prems concls;
in
map (fn goal =>
Variable.add_free_names lthy goal []
|> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
(hyp_subst_tac ctxt THEN' rtac ctxt refl) 1))
|> Thm.close_derivation \<^here>)
goals
end;
val timer = time (timer "Derived simple theorems");
(* coalgebra *)
val coalg_bind = mk_internal_b (coN ^ algN) ;
val coalg_def_bind = (Thm.def_binding coalg_bind, []);
(*forall i = 1 ... n: (\<forall>x \<in> Bi. si \<in> Fi_in UNIV .. UNIV B1 ... Bn)*)
val coalg_spec =
let
val ins = @{map 3} mk_in (replicate n (passive_UNIVs @ Bs)) setssAs FTsAs;
fun mk_coalg_conjunct B s X z z' =
mk_Ball B (Term.absfree z' (HOLogic.mk_mem (s $ z, X)));
val rhs = Library.foldr1 HOLogic.mk_conj (@{map 5} mk_coalg_conjunct Bs ss ins zs zs')
in
fold_rev (Term.absfree o Term.dest_Free) (Bs @ ss) rhs
end;
val ((coalg_free, (_, coalg_def_free)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> Local_Theory.define ((coalg_bind, NoSyn), (coalg_def_bind, coalg_spec))
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val coalg = fst (Term.dest_Const (Morphism.term phi coalg_free));
val coalg_def = mk_unabs_def (2 * n) (HOLogic.mk_obj_eq (Morphism.thm phi coalg_def_free));
fun mk_coalg Bs ss =
let
val args = Bs @ ss;
val Ts = map fastype_of args;
val coalgT = Library.foldr (op -->) (Ts, HOLogic.boolT);
in
Term.list_comb (Const (coalg, coalgT), args)
end;
val((((((zs, zs'), Bs), B's), ss), s's), _) =
lthy
|> mk_Frees' "b" activeAs
||>> mk_Frees "B" BTs
||>> mk_Frees "B'" B'Ts
||>> mk_Frees "s" sTs
||>> mk_Frees "s'" s'Ts;
val coalg_prem = HOLogic.mk_Trueprop (mk_coalg Bs ss);
val coalg_in_thms = map (fn i =>
coalg_def RS iffD1 RS mk_conjunctN n i RS bspec) ks
val coalg_set_thmss =
let
val coalg_prem = HOLogic.mk_Trueprop (mk_coalg Bs ss);
fun mk_prem x B = mk_Trueprop_mem (x, B);
fun mk_concl s x B set = HOLogic.mk_Trueprop (mk_leq (set $ (s $ x)) B);
val prems = map2 mk_prem zs Bs;
val conclss = @{map 3} (fn s => fn x => fn sets => map2 (mk_concl s x) Bs (drop m sets))
ss zs setssAs;
val goalss = map2 (fn prem => fn concls => map (fn concl =>
Logic.list_implies (coalg_prem :: [prem], concl)) concls) prems conclss;
in
map (fn goals => map (fn goal =>
Variable.add_free_names lthy goal []
|> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
mk_coalg_set_tac ctxt coalg_def))
|> Thm.close_derivation \<^here>)
goals) goalss
end;
fun mk_tcoalg BTs = mk_coalg (map HOLogic.mk_UNIV BTs);
val tcoalg_thm =
let
val goal = HOLogic.mk_Trueprop (mk_tcoalg activeAs ss);
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} => (rtac ctxt (coalg_def RS iffD2) 1 THEN CONJ_WRAP
(K (EVERY' [rtac ctxt ballI, rtac ctxt CollectI,
CONJ_WRAP' (K (EVERY' [rtac ctxt @{thm subset_UNIV}])) allAs] 1)) ss))
|> Thm.close_derivation \<^here>
end;
val timer = time (timer "Coalgebra definition & thms");
(* morphism *)
val mor_bind = mk_internal_b morN;
val mor_def_bind = (Thm.def_binding mor_bind, []);
(*fbetw) forall i = 1 ... n: (\<forall>x \<in> Bi. fi x \<in> B'i)*)
(*mor) forall i = 1 ... n: (\<forall>x \<in> Bi.
Fi_map id ... id f1 ... fn (si x) = si' (fi x)*)
val mor_spec =
let
fun mk_fbetw f B1 B2 z z' =
mk_Ball B1 (Term.absfree z' (HOLogic.mk_mem (f $ z, B2)));
fun mk_mor B mapAsBs f s s' z z' =
mk_Ball B (Term.absfree z' (HOLogic.mk_eq
(Term.list_comb (mapAsBs, passive_ids @ fs @ [s $ z]), s' $ (f $ z))));
val rhs = HOLogic.mk_conj
(Library.foldr1 HOLogic.mk_conj (@{map 5} mk_fbetw fs Bs B's zs zs'),
Library.foldr1 HOLogic.mk_conj (@{map 7} mk_mor Bs mapsAsBs fs ss s's zs zs'))
in
fold_rev (Term.absfree o Term.dest_Free) (Bs @ ss @ B's @ s's @ fs) rhs
end;
val ((mor_free, (_, mor_def_free)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> Local_Theory.define ((mor_bind, NoSyn), (mor_def_bind, mor_spec))
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val mor = fst (Term.dest_Const (Morphism.term phi mor_free));
val mor_def = mk_unabs_def (5 * n) (HOLogic.mk_obj_eq (Morphism.thm phi mor_def_free));
fun mk_mor Bs1 ss1 Bs2 ss2 fs =
let
val args = Bs1 @ ss1 @ Bs2 @ ss2 @ fs;
val Ts = map fastype_of (Bs1 @ ss1 @ Bs2 @ ss2 @ fs);
val morT = Library.foldr (op -->) (Ts, HOLogic.boolT);
in
Term.list_comb (Const (mor, morT), args)
end;
val ((((((((((((((zs, z's), Bs), Bs_copy), B's), B''s), ss), s's), s''s), fs), fs_copy), gs),
RFs), Rs), _) =
lthy
|> mk_Frees "b" activeAs
||>> mk_Frees "b" activeBs
||>> mk_Frees "B" BTs
||>> mk_Frees "B" BTs
||>> mk_Frees "B'" B'Ts
||>> mk_Frees "B''" B''Ts
||>> mk_Frees "s" sTs
||>> mk_Frees "s'" s'Ts
||>> mk_Frees "s''" s''Ts
||>> mk_Frees "f" fTs
||>> mk_Frees "f" fTs
||>> mk_Frees "g" gTs
||>> mk_Frees "x" FRTs
||>> mk_Frees "R" setRTs;
val mor_prem = HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs);
val (mor_image_thms, morE_thms) =
let
val prem = HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs);
fun mk_image_goal f B1 B2 =
Logic.mk_implies (prem, HOLogic.mk_Trueprop (mk_leq (mk_image f $ B1) B2));
val image_goals = @{map 3} mk_image_goal fs Bs B's;
fun mk_elim_goal B mapAsBs f s s' x =
Logic.list_implies ([prem, mk_Trueprop_mem (x, B)],
mk_Trueprop_eq (Term.list_comb (mapAsBs, passive_ids @ fs @ [s $ x]), s' $ (f $ x)));
val elim_goals = @{map 6} mk_elim_goal Bs mapsAsBs fs ss s's zs;
fun prove goal =
Variable.add_free_names lthy goal []
|> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
mk_mor_elim_tac ctxt mor_def))
|> Thm.close_derivation \<^here>;
in
(map prove image_goals, map prove elim_goals)
end;
val mor_image'_thms = map (fn thm => @{thm set_mp} OF [thm, imageI]) mor_image_thms;
val mor_incl_thm =
let
val prems = map2 (HOLogic.mk_Trueprop oo mk_leq) Bs Bs_copy;
val concl = HOLogic.mk_Trueprop (mk_mor Bs ss Bs_copy ss active_ids);
val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
in
Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
(fn {context = ctxt, prems = _} => mk_mor_incl_tac ctxt mor_def map_ids)
|> Thm.close_derivation \<^here>
end;
val mor_id_thm = mor_incl_thm OF (replicate n subset_refl);
val mor_comp_thm =
let
val prems =
[HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs),
HOLogic.mk_Trueprop (mk_mor B's s's B''s s''s gs)];
val concl =
HOLogic.mk_Trueprop (mk_mor Bs ss B''s s''s (map2 (curry HOLogic.mk_comp) gs fs));
val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
in
Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
(fn {context = ctxt, prems = _} =>
mk_mor_comp_tac ctxt mor_def mor_image'_thms morE_thms map_comp_id_thms)
|> Thm.close_derivation \<^here>
end;
val mor_cong_thm =
let
val prems = map HOLogic.mk_Trueprop
(map2 (curry HOLogic.mk_eq) fs_copy fs @ [mk_mor Bs ss B's s's fs])
val concl = HOLogic.mk_Trueprop (mk_mor Bs ss B's s's fs_copy);
val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
in
Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
(fn {context = ctxt, prems = _} => (hyp_subst_tac ctxt THEN' assume_tac ctxt) 1)
|> Thm.close_derivation \<^here>
end;
val mor_UNIV_thm =
let
fun mk_conjunct mapAsBs f s s' = HOLogic.mk_eq
(HOLogic.mk_comp (Term.list_comb (mapAsBs, passive_ids @ fs), s),
HOLogic.mk_comp (s', f));
val lhs = mk_mor active_UNIVs ss (map HOLogic.mk_UNIV activeBs) s's fs;
val rhs = Library.foldr1 HOLogic.mk_conj (@{map 4} mk_conjunct mapsAsBs fs ss s's);
val vars = fold (Variable.add_free_names lthy) [lhs, rhs] [];
in
Goal.prove_sorry lthy vars [] (mk_Trueprop_eq (lhs, rhs))
(fn {context = ctxt, prems = _} => mk_mor_UNIV_tac ctxt morE_thms mor_def)
|> Thm.close_derivation \<^here>
end;
val mor_str_thm =
let
val maps = map2 (fn Ds => fn bnf => Term.list_comb
(mk_map_of_bnf Ds allAs (passiveAs @ FTsAs) bnf, passive_ids @ ss)) Dss bnfs;
val goal = HOLogic.mk_Trueprop (mk_mor active_UNIVs ss (map HOLogic.mk_UNIV FTsAs) maps ss);
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} => mk_mor_str_tac ctxt ks mor_UNIV_thm)
|> Thm.close_derivation \<^here>
end;
val timer = time (timer "Morphism definition & thms");
(* bisimulation *)
val bis_bind = mk_internal_b bisN;
val bis_def_bind = (Thm.def_binding bis_bind, []);
fun mk_bis_le_conjunct R B1 B2 = mk_leq R (mk_Times (B1, B2));
val bis_le = Library.foldr1 HOLogic.mk_conj (@{map 3} mk_bis_le_conjunct Rs Bs B's)
val bis_spec =
let
val fst_args = passive_ids @ fsts;
val snd_args = passive_ids @ snds;
fun mk_bis R s s' b1 b2 RF map1 map2 sets =
list_all_free [b1, b2] (HOLogic.mk_imp
(HOLogic.mk_mem (HOLogic.mk_prod (b1, b2), R),
mk_Bex (mk_in (passive_UNIVs @ Rs) sets (snd (dest_Free RF)))
(Term.absfree (dest_Free RF) (HOLogic.mk_conj
(HOLogic.mk_eq (Term.list_comb (map1, fst_args) $ RF, s $ b1),
HOLogic.mk_eq (Term.list_comb (map2, snd_args) $ RF, s' $ b2))))));
val rhs = HOLogic.mk_conj
(bis_le, Library.foldr1 HOLogic.mk_conj
(@{map 9} mk_bis Rs ss s's zs z's RFs map_fsts map_snds bis_setss))
in
fold_rev (Term.absfree o Term.dest_Free) (Bs @ ss @ B's @ s's @ Rs) rhs
end;
val ((bis_free, (_, bis_def_free)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> Local_Theory.define ((bis_bind, NoSyn), (bis_def_bind, bis_spec))
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val bis = fst (Term.dest_Const (Morphism.term phi bis_free));
val bis_def = mk_unabs_def (5 * n) (HOLogic.mk_obj_eq (Morphism.thm phi bis_def_free));
fun mk_bis Bs1 ss1 Bs2 ss2 Rs =
let
val args = Bs1 @ ss1 @ Bs2 @ ss2 @ Rs;
val Ts = map fastype_of args;
val bisT = Library.foldr (op -->) (Ts, HOLogic.boolT);
in
Term.list_comb (Const (bis, bisT), args)
end;
val (((((((((((((((((zs, z's), Bs), B's), B''s), ss), s's), s''s), fs), (Rtuple, Rtuple')), Rs),
Rs_copy), R's), sRs), (idx, idx')), Idx), Ris), _) =
lthy
|> mk_Frees "b" activeAs
||>> mk_Frees "b" activeBs
||>> mk_Frees "B" BTs
||>> mk_Frees "B'" B'Ts
||>> mk_Frees "B''" B''Ts
||>> mk_Frees "s" sTs
||>> mk_Frees "s'" s'Ts
||>> mk_Frees "s''" s''Ts
||>> mk_Frees "f" fTs
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "Rtuple") all_sbisT
||>> mk_Frees "R" setRTs
||>> mk_Frees "R" setRTs
||>> mk_Frees "R'" setR'Ts
||>> mk_Frees "R" setsRTs
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "i") idxT
||>> yield_singleton (mk_Frees "I") (HOLogic.mk_setT idxT)
||>> mk_Frees "Ri" (map (fn T => idxT --> T) setRTs);
val bis_cong_thm =
let
val prems = map HOLogic.mk_Trueprop
(mk_bis Bs ss B's s's Rs :: map2 (curry HOLogic.mk_eq) Rs_copy Rs)
val concl = HOLogic.mk_Trueprop (mk_bis Bs ss B's s's Rs_copy);
val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
in
Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
(fn {context = ctxt, prems = _} => (hyp_subst_tac ctxt THEN' assume_tac ctxt) 1)
|> Thm.close_derivation \<^here>
end;
val bis_rel_thm =
let
fun mk_conjunct R s s' b1 b2 rel =
list_all_free [b1, b2] (HOLogic.mk_imp
(HOLogic.mk_mem (HOLogic.mk_prod (b1, b2), R),
Term.list_comb (rel, passive_eqs @ map mk_in_rel Rs) $ (s $ b1) $ (s' $ b2)));
val rhs = HOLogic.mk_conj
(bis_le, Library.foldr1 HOLogic.mk_conj
(@{map 6} mk_conjunct Rs ss s's zs z's relsAsBs))
val goal = mk_Trueprop_eq (mk_bis Bs ss B's s's Rs, rhs);
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} => mk_bis_rel_tac ctxt m bis_def in_rels map_comps
map_cong0s set_mapss)
|> Thm.close_derivation \<^here>
end;
val bis_converse_thm =
let
val goal = Logic.mk_implies (HOLogic.mk_Trueprop (mk_bis Bs ss B's s's Rs),
HOLogic.mk_Trueprop (mk_bis B's s's Bs ss (map mk_converse Rs)));
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} => mk_bis_converse_tac ctxt m bis_rel_thm rel_congs
rel_converseps)
|> Thm.close_derivation \<^here>
end;
val bis_O_thm =
let
val prems =
[HOLogic.mk_Trueprop (mk_bis Bs ss B's s's Rs),
HOLogic.mk_Trueprop (mk_bis B's s's B''s s''s R's)];
val concl =
HOLogic.mk_Trueprop (mk_bis Bs ss B''s s''s (map2 (curry mk_rel_comp) Rs R's));
val vars = fold (Variable.add_free_names lthy) (concl :: prems) [];
in
Goal.prove_sorry lthy vars [] (Logic.list_implies (prems, concl))
(fn {context = ctxt, prems = _} => mk_bis_O_tac ctxt m bis_rel_thm rel_congs le_rel_OOs)
|> Thm.close_derivation \<^here>
end;
val bis_Gr_thm =
let
val concl = HOLogic.mk_Trueprop (mk_bis Bs ss B's s's (map2 mk_Gr Bs fs));
val vars = fold (Variable.add_free_names lthy) ([coalg_prem, mor_prem, concl]) [];
in
Goal.prove_sorry lthy vars [] (Logic.list_implies ([coalg_prem, mor_prem], concl))
(fn {context = ctxt, prems = _} => mk_bis_Gr_tac ctxt bis_rel_thm rel_Grps mor_image_thms
morE_thms coalg_in_thms)
|> Thm.close_derivation \<^here>
end;
val bis_image2_thm = bis_cong_thm OF
((bis_O_thm OF [bis_Gr_thm RS bis_converse_thm, bis_Gr_thm]) ::
replicate n @{thm image2_Gr});
val bis_Id_on_thm = bis_cong_thm OF ((mor_id_thm RSN (2, bis_Gr_thm)) ::
replicate n @{thm Id_on_Gr});
val bis_Union_thm =
let
val prem =
HOLogic.mk_Trueprop (mk_Ball Idx
(Term.absfree idx' (mk_bis Bs ss B's s's (map (fn R => R $ idx) Ris))));
val concl =
HOLogic.mk_Trueprop (mk_bis Bs ss B's s's (map (mk_UNION Idx) Ris));
val vars = fold (Variable.add_free_names lthy) [prem, concl] [];
in
Goal.prove_sorry lthy vars [] (Logic.mk_implies (prem, concl))
(fn {context = ctxt, prems = _} => mk_bis_Union_tac ctxt bis_def in_mono'_thms)
|> Thm.close_derivation \<^here>
end;
(* self-bisimulation *)
fun mk_sbis Bs ss Rs = mk_bis Bs ss Bs ss Rs;
(* largest self-bisimulation *)
val lsbis_binds = mk_internal_bs lsbisN;
fun lsbis_bind i = nth lsbis_binds (i - 1);
val lsbis_def_bind = rpair [] o Thm.def_binding o lsbis_bind;
val all_sbis = HOLogic.mk_Collect (fst Rtuple', snd Rtuple', list_exists_free sRs
(HOLogic.mk_conj (HOLogic.mk_eq (Rtuple, HOLogic.mk_tuple sRs), mk_sbis Bs ss sRs)));
fun lsbis_spec i =
fold_rev (Term.absfree o Term.dest_Free) (Bs @ ss)
(mk_UNION all_sbis (Term.absfree Rtuple' (mk_nthN n Rtuple i)));
val ((lsbis_frees, (_, lsbis_def_frees)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> fold_map (fn i => Local_Theory.define
((lsbis_bind i, NoSyn), (lsbis_def_bind i, lsbis_spec i))) ks
|>> apsnd split_list o split_list
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val lsbis_defs = map (fn def =>
mk_unabs_def (2 * n) (HOLogic.mk_obj_eq (Morphism.thm phi def))) lsbis_def_frees;
val lsbiss = map (fst o Term.dest_Const o Morphism.term phi) lsbis_frees;
fun mk_lsbis Bs ss i =
let
val args = Bs @ ss;
val Ts = map fastype_of args;
val RT = mk_relT (`I (HOLogic.dest_setT (fastype_of (nth Bs (i - 1)))));
val lsbisT = Library.foldr (op -->) (Ts, RT);
in
Term.list_comb (Const (nth lsbiss (i - 1), lsbisT), args)
end;
val (((((zs, zs'), Bs), ss), sRs), _) =
lthy
|> mk_Frees' "b" activeAs
||>> mk_Frees "B" BTs
||>> mk_Frees "s" sTs
||>> mk_Frees "R" setsRTs;
val sbis_prem = HOLogic.mk_Trueprop (mk_sbis Bs ss sRs);
val coalg_prem = HOLogic.mk_Trueprop (mk_coalg Bs ss);
val sbis_lsbis_thm =
let
val goal = HOLogic.mk_Trueprop (mk_sbis Bs ss (map (mk_lsbis Bs ss) ks));
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} =>
mk_sbis_lsbis_tac ctxt lsbis_defs bis_Union_thm bis_cong_thm)
|> Thm.close_derivation \<^here>
end;
val lsbis_incl_thms = map (fn i => sbis_lsbis_thm RS
(bis_def RS iffD1 RS conjunct1 RS mk_conjunctN n i)) ks;
val lsbisE_thms = map (fn i => (mk_specN 2 (sbis_lsbis_thm RS
(bis_def RS iffD1 RS conjunct2 RS mk_conjunctN n i))) RS mp) ks;
val incl_lsbis_thms =
let
fun mk_concl i R = HOLogic.mk_Trueprop (mk_leq R (mk_lsbis Bs ss i));
val goals = map2 (fn i => fn R => Logic.mk_implies (sbis_prem, mk_concl i R)) ks sRs;
in
@{map 3} (fn goal => fn i => fn def =>
Variable.add_free_names lthy goal []
|> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
mk_incl_lsbis_tac ctxt n i def))
|> Thm.close_derivation \<^here>)
goals ks lsbis_defs
end;
val equiv_lsbis_thms =
let
fun mk_concl i B = HOLogic.mk_Trueprop (mk_equiv B (mk_lsbis Bs ss i));
val goals = map2 (fn i => fn B => Logic.mk_implies (coalg_prem, mk_concl i B)) ks Bs;
in
@{map 3} (fn goal => fn l_incl => fn incl_l =>
Variable.add_free_names lthy goal []
|> (fn vars => Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} => mk_equiv_lsbis_tac ctxt sbis_lsbis_thm l_incl incl_l
bis_Id_on_thm bis_converse_thm bis_O_thm)
|> Thm.close_derivation \<^here>))
goals lsbis_incl_thms incl_lsbis_thms
end;
val timer = time (timer "Bisimulations");
(* bounds *)
val (lthy, sbd, sbdT,
sbd_card_order, sbd_Cinfinite, sbd_Card_order, set_sbdss) =
if n = 1
then (lthy, sum_bd, sum_bdT, bd_card_order, bd_Cinfinite, bd_Card_order, set_bdss)
else
let
val sbdT_bind = mk_internal_b sum_bdTN;
val ((sbdT_name, (sbdT_glob_info, sbdT_loc_info)), lthy) =
typedef (sbdT_bind, sum_bdT_params', NoSyn)
(HOLogic.mk_UNIV sum_bdT) NONE (fn ctxt =>
EVERY' [rtac ctxt exI, rtac ctxt UNIV_I] 1) lthy;
val sbdT = Type (sbdT_name, sum_bdT_params);
val Abs_sbdT = Const (#Abs_name sbdT_glob_info, sum_bdT --> sbdT);
val sbd_bind = mk_internal_b sum_bdN;
val sbd_def_bind = (Thm.def_binding sbd_bind, []);
val sbd_spec = mk_dir_image sum_bd Abs_sbdT;
val ((sbd_free, (_, sbd_def_free)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> Local_Theory.define ((sbd_bind, NoSyn), (sbd_def_bind, sbd_spec))
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val sbd_def = HOLogic.mk_obj_eq (Morphism.thm phi sbd_def_free);
val sbd = Const (fst (Term.dest_Const (Morphism.term phi sbd_free)), mk_relT (`I sbdT));
val Abs_sbdT_inj = mk_Abs_inj_thm (#Abs_inject sbdT_loc_info);
val Abs_sbdT_bij = mk_Abs_bij_thm lthy Abs_sbdT_inj (#Abs_cases sbdT_loc_info);
val sum_Cinfinite = mk_sum_Cinfinite bd_Cinfinites;
val sum_Card_order = sum_Cinfinite RS conjunct2;
val sum_card_order = mk_sum_card_order bd_card_orders;
val sbd_ordIso = @{thm ssubst_Pair_rhs} OF
[@{thm dir_image} OF [Abs_sbdT_inj, sum_Card_order], sbd_def];
val sbd_card_order = @{thm iffD2[OF arg_cong[of _ _ card_order]]} OF
[sbd_def, @{thm card_order_dir_image} OF [Abs_sbdT_bij, sum_card_order]];
val sbd_Cinfinite = @{thm Cinfinite_cong} OF [sbd_ordIso, sum_Cinfinite];
val sbd_Card_order = sbd_Cinfinite RS conjunct2;
fun mk_set_sbd i bd_Card_order bds =
map (fn thm => @{thm ordLeq_ordIso_trans} OF
[bd_Card_order RS mk_ordLeq_csum n i thm, sbd_ordIso]) bds;
val set_sbdss = @{map 3} mk_set_sbd ks bd_Card_orders set_bdss;
in
(lthy, sbd, sbdT, sbd_card_order, sbd_Cinfinite, sbd_Card_order, set_sbdss)
end;
val sbdTs = replicate n sbdT;
val sum_sbdT = mk_sumTN sbdTs;
val sum_sbd_listT = HOLogic.listT sum_sbdT;
val sum_sbd_list_setT = HOLogic.mk_setT sum_sbd_listT;
val bdTs = passiveAs @ replicate n sbdT;
val to_sbd_maps = @{map 4} mk_map_of_bnf Dss Ass (replicate n bdTs) bnfs;
val bdFTs = mk_FTs bdTs;
val sbdFT = mk_sumTN bdFTs;
val treeT = HOLogic.mk_prodT (sum_sbd_list_setT, sum_sbd_listT --> sbdFT);
val treeQT = HOLogic.mk_setT treeT;
val treeTs = passiveAs @ replicate n treeT;
val treeQTs = passiveAs @ replicate n treeQT;
val treeFTs = mk_FTs treeTs;
val tree_maps = @{map 4} mk_map_of_bnf Dss (replicate n bdTs) (replicate n treeTs) bnfs;
val final_maps = @{map 4} mk_map_of_bnf Dss (replicate n treeTs) (replicate n treeQTs) bnfs;
val isNode_setss = mk_setss (passiveAs @ replicate n sbdT);
val root = HOLogic.mk_set sum_sbd_listT [HOLogic.mk_list sum_sbdT []];
val Zero = HOLogic.mk_tuple (map (fn U => absdummy U root) activeAs);
val Lev_recT = fastype_of Zero;
val Nil = HOLogic.mk_tuple (@{map 3} (fn i => fn z => fn z'=>
Term.absfree z' (mk_InN activeAs z i)) ks zs zs');
val rv_recT = fastype_of Nil;
val (((((((((((((((zs, zs'), zs_copy), ss), (nat, nat')),
(sumx, sumx')), (kks, kks')), (kl, kl')), (kl_copy, kl'_copy)), (Kl, Kl')), (lab, lab')),
(Kl_lab, Kl_lab')), xs), (Lev_rec, Lev_rec')), (rv_rec, rv_rec')), _) =
lthy
|> mk_Frees' "b" activeAs
||>> mk_Frees "b" activeAs
||>> mk_Frees "s" sTs
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "n") HOLogic.natT
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "sumx") sum_sbdT
||>> mk_Frees' "k" sbdTs
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "kl") sum_sbd_listT
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "kl") sum_sbd_listT
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "Kl") sum_sbd_list_setT
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "lab") (sum_sbd_listT --> sbdFT)
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "Kl_lab") treeT
||>> mk_Frees "x" bdFTs
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "rec") Lev_recT
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "rec") rv_recT;
val (k, k') = (hd kks, hd kks')
val timer = time (timer "Bounds");
(* tree coalgebra *)
val isNode_binds = mk_internal_bs isNodeN;
fun isNode_bind i = nth isNode_binds (i - 1);
val isNode_def_bind = rpair [] o Thm.def_binding o isNode_bind;
val isNodeT =
Library.foldr (op -->) (map fastype_of [Kl, lab, kl], HOLogic.boolT);
val Succs = @{map 3} (fn i => fn k => fn k' =>
HOLogic.mk_Collect (fst k', snd k', HOLogic.mk_mem (mk_InN sbdTs k i, mk_Succ Kl kl)))
ks kks kks';
fun isNode_spec sets x i =
let
val active_sets = drop m (map (fn set => set $ x) sets);
val rhs = list_exists_free [x]
(Library.foldr1 HOLogic.mk_conj (HOLogic.mk_eq (lab $ kl, mk_InN bdFTs x i) ::
map2 (curry HOLogic.mk_eq) active_sets Succs));
in
fold_rev (Term.absfree o Term.dest_Free) [Kl, lab, kl] rhs
end;
val ((isNode_frees, (_, isNode_def_frees)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> @{fold_map 3} (fn i => fn x => fn sets => Local_Theory.define
((isNode_bind i, NoSyn), (isNode_def_bind i, isNode_spec sets x i)))
ks xs isNode_setss
|>> apsnd split_list o split_list
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val isNode_defs = map (fn def =>
mk_unabs_def 3 (HOLogic.mk_obj_eq (Morphism.thm phi def))) isNode_def_frees;
val isNodes = map (fst o Term.dest_Const o Morphism.term phi) isNode_frees;
fun mk_isNode kl i =
Term.list_comb (Const (nth isNodes (i - 1), isNodeT), [Kl, lab, kl]);
val isTree =
let
val empty = HOLogic.mk_mem (HOLogic.mk_list sum_sbdT [], Kl);
val tree = mk_Ball Kl (Term.absfree kl'
(Library.foldr1 HOLogic.mk_conj (@{map 4} (fn Succ => fn i => fn k => fn k' =>
mk_Ball Succ (Term.absfree k' (mk_isNode
(mk_append (kl, HOLogic.mk_list sum_sbdT [mk_InN sbdTs k i])) i)))
Succs ks kks kks')));
in
HOLogic.mk_conj (empty, tree)
end;
val carT_binds = mk_internal_bs carTN;
fun carT_bind i = nth carT_binds (i - 1);
val carT_def_bind = rpair [] o Thm.def_binding o carT_bind;
fun carT_spec i =
HOLogic.mk_Collect (fst Kl_lab', snd Kl_lab', list_exists_free [Kl, lab]
(HOLogic.mk_conj (HOLogic.mk_eq (Kl_lab, HOLogic.mk_prod (Kl, lab)),
HOLogic.mk_conj (isTree, mk_isNode (HOLogic.mk_list sum_sbdT []) i))));
val ((carT_frees, (_, carT_def_frees)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> fold_map (fn i =>
Local_Theory.define ((carT_bind i, NoSyn), (carT_def_bind i, carT_spec i))) ks
|>> apsnd split_list o split_list
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val carT_defs = map (fn def => HOLogic.mk_obj_eq (Morphism.thm phi def)) carT_def_frees;
val carTs = map (fst o Term.dest_Const o Morphism.term phi) carT_frees;
fun mk_carT i = Const (nth carTs (i - 1), HOLogic.mk_setT treeT);
val strT_binds = mk_internal_bs strTN;
fun strT_bind i = nth strT_binds (i - 1);
val strT_def_bind = rpair [] o Thm.def_binding o strT_bind;
fun strT_spec mapFT FT i =
let
fun mk_f i k k' =
let val in_k = mk_InN sbdTs k i;
in Term.absfree k' (HOLogic.mk_prod (mk_Shift Kl in_k, mk_shift lab in_k)) end;
val f = Term.list_comb (mapFT, passive_ids @ @{map 3} mk_f ks kks kks');
val (fTs1, fTs2) = apsnd tl (chop (i - 1) (map (fn T => T --> FT) bdFTs));
val fs = map mk_undefined fTs1 @ (f :: map mk_undefined fTs2);
in
HOLogic.mk_case_prod (Term.absfree Kl' (Term.absfree lab'
(mk_case_sumN fs $ (lab $ HOLogic.mk_list sum_sbdT []))))
end;
val ((strT_frees, (_, strT_def_frees)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> @{fold_map 3} (fn i => fn mapFT => fn FT => Local_Theory.define
((strT_bind i, NoSyn), (strT_def_bind i, strT_spec mapFT FT i)))
ks tree_maps treeFTs
|>> apsnd split_list o split_list
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val strT_defs = map (fn def =>
trans OF [HOLogic.mk_obj_eq (Morphism.thm phi def) RS fun_cong, @{thm prod.case}])
strT_def_frees;
val strTs = map (fst o Term.dest_Const o Morphism.term phi) strT_frees;
fun mk_strT FT i = Const (nth strTs (i - 1), treeT --> FT);
val carTAs = map mk_carT ks;
val strTAs = map2 mk_strT treeFTs ks;
val coalgT_thm =
Goal.prove_sorry lthy [] [] (HOLogic.mk_Trueprop (mk_coalg carTAs strTAs))
(fn {context = ctxt, prems = _} => mk_coalgT_tac ctxt m
(coalg_def :: isNode_defs @ carT_defs) strT_defs set_mapss)
|> Thm.close_derivation \<^here>;
val timer = time (timer "Tree coalgebra");
fun mk_to_sbd s x i i' =
mk_toCard (nth (nth setssAs (i - 1)) (m + i' - 1) $ (s $ x)) sbd;
fun mk_from_sbd s x i i' =
mk_fromCard (nth (nth setssAs (i - 1)) (m + i' - 1) $ (s $ x)) sbd;
fun mk_to_sbd_thmss thm = map (map (fn set_sbd =>
thm OF [set_sbd, sbd_Card_order]) o drop m) set_sbdss;
val to_sbd_inj_thmss = mk_to_sbd_thmss @{thm toCard_inj};
val from_to_sbd_thmss = mk_to_sbd_thmss @{thm fromCard_toCard};
val Lev_bind = mk_internal_b LevN;
val Lev_def_bind = rpair [] (Thm.def_binding Lev_bind);
val Lev_spec =
let
fun mk_Suc i s setsAs a a' =
let
val sets = drop m setsAs;
fun mk_set i' set b =
let
val Cons = HOLogic.mk_eq (kl_copy,
mk_Cons (mk_InN sbdTs (mk_to_sbd s a i i' $ b) i') kl)
val b_set = HOLogic.mk_mem (b, set $ (s $ a));
val kl_rec = HOLogic.mk_mem (kl, mk_nthN n Lev_rec i' $ b);
in
HOLogic.mk_Collect (fst kl'_copy, snd kl'_copy, list_exists_free [b, kl]
(HOLogic.mk_conj (Cons, HOLogic.mk_conj (b_set, kl_rec))))
end;
in
Term.absfree a' (Library.foldl1 mk_union (@{map 3} mk_set ks sets zs_copy))
end;
val Suc = Term.absdummy HOLogic.natT (Term.absfree Lev_rec'
(HOLogic.mk_tuple (@{map 5} mk_Suc ks ss setssAs zs zs')));
val rhs = mk_rec_nat Zero Suc;
in
fold_rev (Term.absfree o Term.dest_Free) ss rhs
end;
val ((Lev_free, (_, Lev_def_free)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> Local_Theory.define ((Lev_bind, NoSyn), (Lev_def_bind, Lev_spec))
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val Lev_def = mk_unabs_def n (HOLogic.mk_obj_eq (Morphism.thm phi Lev_def_free));
val Lev = fst (Term.dest_Const (Morphism.term phi Lev_free));
fun mk_Lev ss nat i =
let
val Ts = map fastype_of ss;
val LevT = Library.foldr (op -->) (Ts, HOLogic.natT -->
HOLogic.mk_tupleT (map (fn U => domain_type U --> sum_sbd_list_setT) Ts));
in
mk_nthN n (Term.list_comb (Const (Lev, LevT), ss) $ nat) i
end;
val Lev_0s = flat (mk_rec_simps n @{thm rec_nat_0_imp} [Lev_def]);
val Lev_Sucs = flat (mk_rec_simps n @{thm rec_nat_Suc_imp} [Lev_def]);
val rv_bind = mk_internal_b rvN;
val rv_def_bind = rpair [] (Thm.def_binding rv_bind);
val rv_spec =
let
fun mk_Cons i s b b' =
let
fun mk_case i' =
Term.absfree k' (mk_nthN n rv_rec i' $ (mk_from_sbd s b i i' $ k));
in
Term.absfree b' (mk_case_sumN (map mk_case ks) $ sumx)
end;
val Cons = Term.absfree sumx' (Term.absdummy sum_sbd_listT (Term.absfree rv_rec'
(HOLogic.mk_tuple (@{map 4} mk_Cons ks ss zs zs'))));
val rhs = mk_rec_list Nil Cons;
in
fold_rev (Term.absfree o Term.dest_Free) ss rhs
end;
val ((rv_free, (_, rv_def_free)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> Local_Theory.define ((rv_bind, NoSyn), (rv_def_bind, rv_spec))
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val rv_def = mk_unabs_def n (HOLogic.mk_obj_eq (Morphism.thm phi rv_def_free));
val rv = fst (Term.dest_Const (Morphism.term phi rv_free));
fun mk_rv ss kl i =
let
val Ts = map fastype_of ss;
val As = map domain_type Ts;
val rvT = Library.foldr (op -->) (Ts, fastype_of kl -->
HOLogic.mk_tupleT (map (fn U => U --> mk_sumTN As) As));
in
mk_nthN n (Term.list_comb (Const (rv, rvT), ss) $ kl) i
end;
val rv_Nils = flat (mk_rec_simps n @{thm rec_list_Nil_imp} [rv_def]);
val rv_Conss = flat (mk_rec_simps n @{thm rec_list_Cons_imp} [rv_def]);
val beh_binds = mk_internal_bs behN;
fun beh_bind i = nth beh_binds (i - 1);
val beh_def_bind = rpair [] o Thm.def_binding o beh_bind;
fun beh_spec i z =
let
fun mk_case i to_sbd_map s k k' =
Term.absfree k' (mk_InN bdFTs
(Term.list_comb (to_sbd_map, passive_ids @ map (mk_to_sbd s k i) ks) $ (s $ k)) i);
val Lab = Term.absfree kl'
(mk_case_sumN (@{map 5} mk_case ks to_sbd_maps ss zs zs') $ (mk_rv ss kl i $ z));
val rhs = HOLogic.mk_prod (mk_UNION (HOLogic.mk_UNIV HOLogic.natT)
(Term.absfree nat' (mk_Lev ss nat i $ z)), Lab);
in
fold_rev (Term.absfree o Term.dest_Free) (ss @ [z]) rhs
end;
val ((beh_frees, (_, beh_def_frees)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> @{fold_map 2} (fn i => fn z =>
Local_Theory.define ((beh_bind i, NoSyn), (beh_def_bind i, beh_spec i z))) ks zs
|>> apsnd split_list o split_list
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val beh_defs = map (fn def =>
mk_unabs_def (n + 1) (HOLogic.mk_obj_eq (Morphism.thm phi def))) beh_def_frees;
val behs = map (fst o Term.dest_Const o Morphism.term phi) beh_frees;
fun mk_beh ss i =
let
val Ts = map fastype_of ss;
val behT = Library.foldr (op -->) (Ts, nth activeAs (i - 1) --> treeT);
in
Term.list_comb (Const (nth behs (i - 1), behT), ss)
end;
val ((((((zs, zs_copy), zs_copy2), ss), (nat, nat')), (kl, kl')), _) =
lthy
|> mk_Frees "b" activeAs
||>> mk_Frees "b" activeAs
||>> mk_Frees "b" activeAs
||>> mk_Frees "s" sTs
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "n") HOLogic.natT
||>> yield_singleton (apfst (op ~~) oo mk_Frees' "kl") sum_sbd_listT;
val (length_Lev_thms, length_Lev'_thms) =
let
fun mk_conjunct i z = HOLogic.mk_imp (HOLogic.mk_mem (kl, mk_Lev ss nat i $ z),
HOLogic.mk_eq (mk_size kl, nat));
val goal = list_all_free (kl :: zs)
(Library.foldr1 HOLogic.mk_conj (map2 mk_conjunct ks zs));
val vars = Variable.add_free_names lthy goal [];
val cts = map (SOME o Thm.cterm_of lthy) [Term.absfree nat' goal, nat];
val length_Lev =
Goal.prove_sorry lthy vars [] (HOLogic.mk_Trueprop goal)
(fn {context = ctxt, prems = _} => mk_length_Lev_tac ctxt cts Lev_0s Lev_Sucs)
|> Thm.close_derivation \<^here>;
val length_Lev' = mk_specN (n + 1) length_Lev;
val length_Levs = map (fn i => length_Lev' RS mk_conjunctN n i RS mp) ks;
fun mk_goal i z = Logic.mk_implies
(mk_Trueprop_mem (kl, mk_Lev ss nat i $ z),
mk_Trueprop_mem (kl, mk_Lev ss (mk_size kl) i $ z));
val goals = map2 mk_goal ks zs;
val length_Levs' =
map2 (fn goal => fn length_Lev =>
Variable.add_free_names lthy goal []
|> (fn vars => Goal.prove_sorry lthy vars [] goal (fn {context = ctxt, prems = _} =>
mk_length_Lev'_tac ctxt length_Lev))
|> Thm.close_derivation \<^here>)
goals length_Levs;
in
(length_Levs, length_Levs')
end;
val rv_last_thmss =
let
fun mk_conjunct i z i' z_copy = list_exists_free [z_copy]
(HOLogic.mk_eq
(mk_rv ss (mk_append (kl, HOLogic.mk_list sum_sbdT [mk_InN sbdTs k i'])) i $ z,
mk_InN activeAs z_copy i'));
val goal = list_all_free (k :: zs)
(Library.foldr1 HOLogic.mk_conj (map2 (fn i => fn z =>
Library.foldr1 HOLogic.mk_conj
(map2 (mk_conjunct i z) ks zs_copy)) ks zs));
val vars = Variable.add_free_names lthy goal [];
val cTs = [SOME (Thm.ctyp_of lthy sum_sbdT)];
val cts = map (SOME o Thm.cterm_of lthy) [Term.absfree kl' goal, kl];
val rv_last =
Goal.prove_sorry lthy vars [] (HOLogic.mk_Trueprop goal)
(fn {context = ctxt, prems = _} => mk_rv_last_tac ctxt cTs cts rv_Nils rv_Conss)
|> Thm.close_derivation \<^here>;
val rv_last' = mk_specN (n + 1) rv_last;
in
map (fn i => map (fn i' => rv_last' RS mk_conjunctN n i RS mk_conjunctN n i') ks) ks
end;
val set_Lev_thmsss =
let
fun mk_conjunct i z =
let
fun mk_conjunct' i' sets s z' =
let
fun mk_conjunct'' i'' set z'' = HOLogic.mk_imp
(HOLogic.mk_mem (z'', set $ (s $ z')),
HOLogic.mk_mem (mk_append (kl,
HOLogic.mk_list sum_sbdT [mk_InN sbdTs (mk_to_sbd s z' i' i'' $ z'') i'']),
mk_Lev ss (HOLogic.mk_Suc nat) i $ z));
in
HOLogic.mk_imp (HOLogic.mk_eq (mk_rv ss kl i $ z, mk_InN activeAs z' i'),
(Library.foldr1 HOLogic.mk_conj
(@{map 3} mk_conjunct'' ks (drop m sets) zs_copy2)))
end;
in
HOLogic.mk_imp (HOLogic.mk_mem (kl, mk_Lev ss nat i $ z),
Library.foldr1 HOLogic.mk_conj (@{map 4} mk_conjunct' ks setssAs ss zs_copy))
end;
val goal = list_all_free (kl :: zs @ zs_copy @ zs_copy2)
(Library.foldr1 HOLogic.mk_conj (map2 mk_conjunct ks zs));
val vars = Variable.add_free_names lthy goal [];
val cts = map (SOME o Thm.cterm_of lthy) [Term.absfree nat' goal, nat];
val set_Lev =
Goal.prove_sorry lthy vars [] (HOLogic.mk_Trueprop goal)
(fn {context = ctxt, prems = _} =>
mk_set_Lev_tac ctxt cts Lev_0s Lev_Sucs rv_Nils rv_Conss from_to_sbd_thmss)
|> Thm.close_derivation \<^here>;
val set_Lev' = mk_specN (3 * n + 1) set_Lev;
in
map (fn i => map (fn i' => map (fn i'' => set_Lev' RS
mk_conjunctN n i RS mp RS
mk_conjunctN n i' RS mp RS
mk_conjunctN n i'' RS mp) ks) ks) ks
end;
val set_image_Lev_thmsss =
let
fun mk_conjunct i z =
let
fun mk_conjunct' i' sets =
let
fun mk_conjunct'' i'' set s z'' = HOLogic.mk_imp
(HOLogic.mk_eq (mk_rv ss kl i $ z, mk_InN activeAs z'' i''),
HOLogic.mk_mem (k, mk_image (mk_to_sbd s z'' i'' i') $ (set $ (s $ z''))));
in
HOLogic.mk_imp (HOLogic.mk_mem
(mk_append (kl, HOLogic.mk_list sum_sbdT [mk_InN sbdTs k i']),
mk_Lev ss (HOLogic.mk_Suc nat) i $ z),
(Library.foldr1 HOLogic.mk_conj (@{map 4} mk_conjunct'' ks sets ss zs_copy)))
end;
in
HOLogic.mk_imp (HOLogic.mk_mem (kl, mk_Lev ss nat i $ z),
Library.foldr1 HOLogic.mk_conj (map2 mk_conjunct' ks (drop m setssAs')))
end;
val goal = list_all_free (kl :: k :: zs @ zs_copy)
(Library.foldr1 HOLogic.mk_conj (map2 mk_conjunct ks zs));
val vars = Variable.add_free_names lthy goal [];
val cts = map (SOME o Thm.cterm_of lthy) [Term.absfree nat' goal, nat];
val set_image_Lev =
Goal.prove_sorry lthy vars [] (HOLogic.mk_Trueprop goal)
(fn {context = ctxt, prems = _} =>
mk_set_image_Lev_tac ctxt cts Lev_0s Lev_Sucs rv_Nils rv_Conss
from_to_sbd_thmss to_sbd_inj_thmss)
|> Thm.close_derivation \<^here>;
val set_image_Lev' = mk_specN (2 * n + 2) set_image_Lev;
in
map (fn i => map (fn i' => map (fn i'' => set_image_Lev' RS
mk_conjunctN n i RS mp RS
mk_conjunctN n i'' RS mp RS
mk_conjunctN n i' RS mp) ks) ks) ks
end;
val mor_beh_thm =
let
val goal = HOLogic.mk_Trueprop (mk_mor active_UNIVs ss carTAs strTAs (map (mk_beh ss) ks));
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} => mk_mor_beh_tac ctxt m mor_def mor_cong_thm
beh_defs carT_defs strT_defs isNode_defs
to_sbd_inj_thmss from_to_sbd_thmss Lev_0s Lev_Sucs rv_Nils rv_Conss
length_Lev_thms length_Lev'_thms rv_last_thmss set_Lev_thmsss
set_image_Lev_thmsss set_mapss map_comp_id_thms map_cong0s)
|> Thm.close_derivation \<^here>
end;
val timer = time (timer "Behavioral morphism");
val lsbisAs = map (mk_lsbis carTAs strTAs) ks;
fun mk_str_final i =
mk_univ (HOLogic.mk_comp (Term.list_comb (nth final_maps (i - 1),
passive_ids @ map mk_proj lsbisAs), nth strTAs (i - 1)));
val car_finals = map2 mk_quotient carTAs lsbisAs;
val str_finals = map mk_str_final ks;
val coalgT_set_thmss = map (map (fn thm => coalgT_thm RS thm)) coalg_set_thmss;
val equiv_LSBIS_thms = map (fn thm => coalgT_thm RS thm) equiv_lsbis_thms;
val congruent_str_final_thms =
let
fun mk_goal R final_map strT =
HOLogic.mk_Trueprop (mk_congruent R (HOLogic.mk_comp
(Term.list_comb (final_map, passive_ids @ map mk_proj lsbisAs), strT)));
val goals = @{map 3} mk_goal lsbisAs final_maps strTAs;
in
@{map 4} (fn goal => fn lsbisE => fn map_comp_id => fn map_cong0 =>
Goal.prove_sorry lthy [] [] goal
(fn {context = ctxt, prems = _} => mk_congruent_str_final_tac ctxt m lsbisE map_comp_id
map_cong0 equiv_LSBIS_thms)
|> Thm.close_derivation \<^here>)
goals lsbisE_thms map_comp_id_thms map_cong0s
end;
val coalg_final_thm = Goal.prove_sorry lthy [] []
(HOLogic.mk_Trueprop (mk_coalg car_finals str_finals))
(fn {context = ctxt, prems = _} => mk_coalg_final_tac ctxt m coalg_def
congruent_str_final_thms equiv_LSBIS_thms set_mapss coalgT_set_thmss)
|> Thm.close_derivation \<^here>;
val mor_T_final_thm = Goal.prove_sorry lthy [] []
(HOLogic.mk_Trueprop (mk_mor carTAs strTAs car_finals str_finals (map mk_proj lsbisAs)))
(fn {context = ctxt, prems = _} => mk_mor_T_final_tac ctxt mor_def congruent_str_final_thms
equiv_LSBIS_thms)
|> Thm.close_derivation \<^here>;
val mor_final_thm = mor_comp_thm OF [mor_beh_thm, mor_T_final_thm];
val in_car_final_thms = map (fn thm => thm OF [mor_final_thm, UNIV_I]) mor_image'_thms;
val timer = time (timer "Final coalgebra");
val ((T_names, (T_glob_infos, T_loc_infos)), lthy) =
lthy
|> @{fold_map 4} (fn b => fn mx => fn car_final => fn in_car_final =>
typedef (b, params, mx) car_final NONE
(fn ctxt => EVERY' [rtac ctxt exI, rtac ctxt in_car_final] 1))
bs mixfixes car_finals in_car_final_thms
|>> apsnd split_list o split_list;
val Ts = map (fn name => Type (name, params')) T_names;
fun mk_Ts passive = map (Term.typ_subst_atomic (passiveAs ~~ passive)) Ts;
val Ts' = mk_Ts passiveBs;
val Rep_Ts = map2 (fn info => fn T => Const (#Rep_name info, T --> treeQT)) T_glob_infos Ts;
val Abs_Ts = map2 (fn info => fn T => Const (#Abs_name info, treeQT --> T)) T_glob_infos Ts;
val Reps = map #Rep T_loc_infos;
val Rep_injects = map #Rep_inject T_loc_infos;
val Abs_inverses = map #Abs_inverse T_loc_infos;
val timer = time (timer "THE TYPEDEFs & Rep/Abs thms");
val UNIVs = map HOLogic.mk_UNIV Ts;
val FTs = mk_FTs (passiveAs @ Ts);
val FTs_setss = mk_setss (passiveAs @ Ts);
val map_FTs = map2 (fn Ds => mk_map_of_bnf Ds treeQTs (passiveAs @ Ts)) Dss bnfs;
val unfold_fTs = map2 (curry op -->) activeAs Ts;
val emptys = map (fn T => HOLogic.mk_set T []) passiveAs;
val Zeros = map (fn empty =>
HOLogic.mk_tuple (map (fn U => absdummy U empty) Ts)) emptys;
val hrecTs = map fastype_of Zeros;
val (((zs, ss), (Jzs, Jzs')), _) =
lthy
|> mk_Frees "b" activeAs
||>> mk_Frees "s" sTs
||>> mk_Frees' "z" Ts;
fun dtor_bind i = nth external_bs (i - 1) |> Binding.prefix_name (dtorN ^ "_");
val dtor_def_bind = rpair [] o Binding.concealed o Thm.def_binding o dtor_bind;
fun dtor_spec rep str map_FT Jz Jz' =
Term.absfree Jz'
(Term.list_comb (map_FT, map HOLogic.id_const passiveAs @ Abs_Ts) $ (str $ (rep $ Jz)));
val ((dtor_frees, (_, dtor_def_frees)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> @{fold_map 6} (fn i => fn rep => fn str => fn mapx => fn Jz => fn Jz' =>
Local_Theory.define ((dtor_bind i, NoSyn),
(dtor_def_bind i, dtor_spec rep str mapx Jz Jz')))
ks Rep_Ts str_finals map_FTs Jzs Jzs'
|>> apsnd split_list o split_list
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
fun mk_dtors passive =
map (Term.subst_atomic_types (map (Morphism.typ phi) params' ~~ (mk_params passive)) o
Morphism.term phi) dtor_frees;
val dtors = mk_dtors passiveAs;
val dtor's = mk_dtors passiveBs;
val dtor_defs =
map (fn def => HOLogic.mk_obj_eq (Morphism.thm phi def) RS fun_cong) dtor_def_frees;
val coalg_final_set_thmss = map (map (fn thm => coalg_final_thm RS thm)) coalg_set_thmss;
val (mor_Rep_thm, mor_Abs_thm) =
let
val mor_Rep =
Goal.prove_sorry lthy [] []
(HOLogic.mk_Trueprop (mk_mor UNIVs dtors car_finals str_finals Rep_Ts))
(fn {context = ctxt, prems = _} => mk_mor_Rep_tac ctxt (mor_def :: dtor_defs) Reps
Abs_inverses coalg_final_set_thmss map_comp_id_thms map_cong0L_thms)
|> Thm.close_derivation \<^here>;
val mor_Abs =
Goal.prove_sorry lthy [] []
(HOLogic.mk_Trueprop (mk_mor car_finals str_finals UNIVs dtors Abs_Ts))
(fn {context = ctxt, prems = _} => mk_mor_Abs_tac ctxt (mor_def :: dtor_defs)
Abs_inverses)
|> Thm.close_derivation \<^here>;
in
(mor_Rep, mor_Abs)
end;
val timer = time (timer "dtor definitions & thms");
fun unfold_bind i = nth external_bs (i - 1) |> Binding.prefix_name (dtor_unfoldN ^ "_");
val unfold_def_bind = rpair [] o Binding.concealed o Thm.def_binding o unfold_bind;
fun unfold_spec abs f z = fold_rev (Term.absfree o Term.dest_Free) (ss @ [z]) (abs $ (f $ z));
val ((unfold_frees, (_, unfold_def_frees)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> @{fold_map 4} (fn i => fn abs => fn f => fn z =>
Local_Theory.define ((unfold_bind i, NoSyn), (unfold_def_bind i, unfold_spec abs f z)))
ks Abs_Ts (map (fn i => HOLogic.mk_comp
(mk_proj (nth lsbisAs (i - 1)), mk_beh ss i)) ks) zs
|>> apsnd split_list o split_list
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
val unfolds = map (Morphism.term phi) unfold_frees;
val unfold_names = map (fst o dest_Const) unfolds;
fun mk_unfolds passives actives =
@{map 3} (fn name => fn T => fn active =>
Const (name, Library.foldr (op -->)
(map2 (curry op -->) actives (mk_FTs (passives @ actives)), active --> T)))
unfold_names (mk_Ts passives) actives;
fun mk_unfold Ts ss i = Term.list_comb (Const (nth unfold_names (i - 1), Library.foldr (op -->)
(map fastype_of ss, domain_type (fastype_of (nth ss (i - 1))) --> nth Ts (i - 1))), ss);
val unfold_defs = map (fn def =>
mk_unabs_def (n + 1) (HOLogic.mk_obj_eq (Morphism.thm phi def))) unfold_def_frees;
val (((ss, TRs), unfold_fs), _) =
lthy
|> mk_Frees "s" sTs
||>> mk_Frees "r" (map (mk_relT o `I) Ts)
||>> mk_Frees "f" unfold_fTs;
val mor_unfold_thm =
let
val Abs_inverses' = map2 (curry op RS) in_car_final_thms Abs_inverses;
val morEs' = map (fn thm => (thm OF [mor_final_thm, UNIV_I]) RS sym) morE_thms;
val goal = HOLogic.mk_Trueprop (mk_mor active_UNIVs ss UNIVs dtors (map (mk_unfold Ts ss) ks));
val vars = Variable.add_free_names lthy goal [];
in
Goal.prove_sorry lthy vars [] goal
(fn {context = ctxt, prems = _} => mk_mor_unfold_tac ctxt m mor_UNIV_thm dtor_defs
unfold_defs Abs_inverses' morEs' map_comp_id_thms map_cong0s)
|> Thm.close_derivation \<^here>
end;
val dtor_unfold_thms = map (fn thm => (thm OF [mor_unfold_thm, UNIV_I]) RS sym) morE_thms;
val (raw_coind_thms, raw_coind_thm) =
let
val prem = HOLogic.mk_Trueprop (mk_sbis UNIVs dtors TRs);
val concl = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
(map2 (fn R => fn T => mk_leq R (Id_const T)) TRs Ts));
val vars = fold (Variable.add_free_names lthy) [prem, concl] [];
in
`split_conj_thm (Goal.prove_sorry lthy vars [] (Logic.mk_implies (prem, concl))
(fn {context = ctxt, prems = _} => mk_raw_coind_tac ctxt bis_def bis_cong_thm bis_O_thm
bis_converse_thm bis_Gr_thm tcoalg_thm coalgT_thm mor_T_final_thm sbis_lsbis_thm
lsbis_incl_thms incl_lsbis_thms equiv_LSBIS_thms mor_Rep_thm Rep_injects)
|> Thm.close_derivation \<^here>)
end;
val (unfold_unique_mor_thms, unfold_unique_mor_thm) =
let
val prem = HOLogic.mk_Trueprop (mk_mor active_UNIVs ss UNIVs dtors unfold_fs);
fun mk_fun_eq f i = HOLogic.mk_eq (f, mk_unfold Ts ss i);
val unique = HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
(map2 mk_fun_eq unfold_fs ks));
val vars = fold (Variable.add_free_names lthy) [prem, unique] [];
val bis_thm = tcoalg_thm RSN (2, tcoalg_thm RS bis_image2_thm);
val mor_thm = mor_comp_thm OF [mor_final_thm, mor_Abs_thm];
val unique_mor = Goal.prove_sorry lthy vars [] (Logic.mk_implies (prem, unique))
(fn {context = ctxt, prems = _} => mk_unfold_unique_mor_tac ctxt raw_coind_thms
bis_thm mor_thm unfold_defs)
|> Thm.close_derivation \<^here>;
in
`split_conj_thm unique_mor
end;
val (dtor_unfold_unique_thms, dtor_unfold_unique_thm) = `split_conj_thm (split_conj_prems n
(mor_UNIV_thm RS iffD2 RS unfold_unique_mor_thm));
val unfold_dtor_thms = map (fn thm => mor_id_thm RS thm RS sym) unfold_unique_mor_thms;
val unfold_o_dtor_thms =
let
val mor = mor_comp_thm OF [mor_str_thm, mor_unfold_thm];
in
map2 (fn unique => fn unfold_ctor =>
trans OF [mor RS unique, unfold_ctor]) unfold_unique_mor_thms unfold_dtor_thms
end;
val timer = time (timer "unfold definitions & thms");
val map_dtors = map2 (fn Ds => fn bnf =>
Term.list_comb (mk_map_of_bnf Ds (passiveAs @ Ts) (passiveAs @ FTs) bnf,
map HOLogic.id_const passiveAs @ dtors)) Dss bnfs;
fun ctor_bind i = nth external_bs (i - 1) |> Binding.prefix_name (ctorN ^ "_");
val ctor_def_bind = rpair [] o Binding.concealed o Thm.def_binding o ctor_bind;
fun ctor_spec i = mk_unfold Ts map_dtors i;
val ((ctor_frees, (_, ctor_def_frees)), (lthy, lthy_old)) =
lthy
|> (snd o Local_Theory.begin_nested)
|> fold_map (fn i =>
Local_Theory.define ((ctor_bind i, NoSyn), (ctor_def_bind i, ctor_spec i))) ks
|>> apsnd split_list o split_list
||> `Local_Theory.end_nested;
val phi = Proof_Context.export_morphism lthy_old lthy;
fun mk_ctors params =
map (Term.subst_atomic_types (map (Morphism.typ phi) params' ~~ params) o Morphism.term phi)
ctor_frees;
val ctors = mk_ctors params';
val ctor_defs = map (fn def => HOLogic.mk_obj_eq (Morphism.thm phi def)) ctor_def_frees;
val ctor_o_dtor_thms = map2 (Local_Defs.fold lthy o single) ctor_defs unfold_o_dtor_thms;
val dtor_o_ctor_thms =
let
fun mk_goal dtor ctor FT =
mk_Trueprop_eq (HOLogic.mk_comp (dtor, ctor), HOLogic.id_const FT);
val goals = @{map 3} mk_goal dtors ctors FTs;
in
@{map 5} (fn goal => fn ctor_def => fn unfold => fn map_comp_id => fn map_cong0L =>
Goal.prove_sorry lthy [] [] goal
(fn {context = ctxt, prems = _} => mk_dtor_o_ctor_tac ctxt ctor_def unfold map_comp_id
map_cong0L unfold_o_dtor_thms)
|> Thm.close_derivation \<^here>)
goals ctor_defs dtor_unfold_thms map_comp_id_thms map_cong0L_thms
end;
val dtor_ctor_thms = map (fn thm => thm RS @{thm pointfree_idE}) dtor_o_ctor_thms;
val ctor_dtor_thms = map (fn thm => thm RS @{thm pointfree_idE}) ctor_o_dtor_thms;
val bij_dtor_thms =
map2 (fn thm1 => fn thm2 => @{thm o_bij} OF [thm1, thm2]) ctor_o_dtor_thms dtor_o_ctor_thms;
val inj_dtor_thms = map (fn thm => thm RS @{thm bij_is_inj}) bij_dtor_thms;
val surj_dtor_thms = map (fn thm => thm RS @{thm bij_is_surj}) bij_dtor_thms;
val dtor_nchotomy_thms = map (fn thm => thm RS @{thm surjD}) surj_dtor_thms;
val dtor_inject_thms = map (fn thm => thm RS @{thm inj_eq}) inj_dtor_thms;
val dtor_exhaust_thms = map (fn thm => thm RS exE) dtor_nchotomy_thms;
val bij_ctor_thms =
map2 (fn thm1 => fn thm2 => @{thm o_bij} OF [thm1, thm2]) dtor_o_ctor_thms ctor_o_dtor_thms;
val inj_ctor_thms = map (fn thm => thm RS @{thm bij_is_inj}) bij_ctor_thms;
val surj_ctor_thms = map (fn thm => thm RS @{thm bij_is_surj}) bij_ctor_thms;
val ctor_nchotomy_thms = map (fn thm => thm RS @{thm surjD}) surj_ctor_thms;
val ctor_inject_thms = map (fn thm => thm RS @{thm inj_eq}) inj_ctor_thms;
val ctor_exhaust_thms = map (fn thm => thm RS exE) ctor_nchotomy_thms;
val timer = time (timer "ctor definitions & thms");
val (((((Jzs, Jzs_copy), Jzs1), Jzs2), phis), _) =
lthy
|> mk_Frees "z" Ts
||>> mk_Frees "z'" Ts
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.61 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|