/*
* Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_X86_VM_VERSION_X86_HPP
#define CPU_X86_VM_VERSION_X86_HPP
#include "runtime/abstract_vm_version.hpp"
#include "utilities/macros.hpp"
#include "utilities/sizes.hpp"
class VM_Version : public Abstract_VM_Version {
friend class VMStructs;
friend class JVMCIVMStructs;
public:
// cpuid result register layouts. These are all unions of a uint32_t
// (in case anyone wants access to the register as a whole) and a bitfield.
union StdCpuid1Eax {
uint32_t value;
struct {
uint32_t stepping : 4,
model : 4,
family : 4,
proc_type : 2,
: 2,
ext_model : 4,
ext_family : 8,
: 4;
} bits;
};
union StdCpuid1Ebx { // example, unused
uint32_t value;
struct {
uint32_t brand_id : 8,
clflush_size : 8,
threads_per_cpu : 8,
apic_id : 8;
} bits;
};
union StdCpuid1Ecx {
uint32_t value;
struct {
uint32_t sse3 : 1,
clmul : 1,
: 1,
monitor : 1,
: 1,
vmx : 1,
: 1,
est : 1,
: 1,
ssse3 : 1,
cid : 1,
: 1,
fma : 1,
cmpxchg16: 1,
: 4,
dca : 1,
sse4_1 : 1,
sse4_2 : 1,
: 2,
popcnt : 1,
: 1,
aes : 1,
: 1,
osxsave : 1,
avx : 1,
f16c : 1,
: 1,
hv : 1;
} bits;
};
union StdCpuid1Edx {
uint32_t value;
struct {
uint32_t : 4,
tsc : 1,
: 3,
cmpxchg8 : 1,
: 6,
cmov : 1,
: 3,
clflush : 1,
: 3,
mmx : 1,
fxsr : 1,
sse : 1,
sse2 : 1,
: 1,
ht : 1,
: 3;
} bits;
};
union DcpCpuid4Eax {
uint32_t value;
struct {
uint32_t cache_type : 5,
: 21,
cores_per_cpu : 6;
} bits;
};
union DcpCpuid4Ebx {
uint32_t value;
struct {
uint32_t L1_line_size : 12,
partitions : 10,
associativity : 10;
} bits;
};
union TplCpuidBEbx {
uint32_t value;
struct {
uint32_t logical_cpus : 16,
: 16;
} bits;
};
union ExtCpuid1Ecx {
uint32_t value;
struct {
uint32_t LahfSahf : 1,
CmpLegacy : 1,
: 3,
lzcnt : 1,
sse4a : 1,
misalignsse : 1,
prefetchw : 1,
: 23;
} bits;
};
union ExtCpuid1Edx {
uint32_t value;
struct {
uint32_t : 22,
mmx_amd : 1,
mmx : 1,
fxsr : 1,
fxsr_opt : 1,
pdpe1gb : 1,
rdtscp : 1,
: 1,
long_mode : 1,
tdnow2 : 1,
tdnow : 1;
} bits;
};
union ExtCpuid5Ex {
uint32_t value;
struct {
uint32_t L1_line_size : 8,
L1_tag_lines : 8,
L1_assoc : 8,
L1_size : 8;
} bits;
};
union ExtCpuid7Edx {
uint32_t value;
struct {
uint32_t : 8,
tsc_invariance : 1,
: 23;
} bits;
};
union ExtCpuid8Ecx {
uint32_t value;
struct {
uint32_t cores_per_cpu : 8,
: 24;
} bits;
};
union SefCpuid7Eax {
uint32_t value;
};
union SefCpuid7Ebx {
uint32_t value;
struct {
uint32_t fsgsbase : 1,
: 2,
bmi1 : 1,
: 1,
avx2 : 1,
: 2,
bmi2 : 1,
erms : 1,
: 1,
rtm : 1,
: 4,
avx512f : 1,
avx512dq : 1,
: 1,
adx : 1,
: 1,
avx512ifma : 1,
: 1,
clflushopt : 1,
clwb : 1,
: 1,
avx512pf : 1,
avx512er : 1,
avx512cd : 1,
sha : 1,
avx512bw : 1,
avx512vl : 1;
} bits;
};
union SefCpuid7Ecx {
uint32_t value;
struct {
uint32_t prefetchwt1 : 1,
avx512_vbmi : 1,
umip : 1,
pku : 1,
ospke : 1,
: 1,
avx512_vbmi2 : 1,
cet_ss : 1,
gfni : 1,
vaes : 1,
avx512_vpclmulqdq : 1,
avx512_vnni : 1,
avx512_bitalg : 1,
: 1,
avx512_vpopcntdq : 1,
: 1,
: 1,
mawau : 5,
rdpid : 1,
: 9;
} bits;
};
union SefCpuid7Edx {
uint32_t value;
struct {
uint32_t : 2,
avx512_4vnniw : 1,
avx512_4fmaps : 1,
fast_short_rep_mov : 1,
: 9,
serialize : 1,
: 5,
cet_ibt : 1,
: 11;
} bits;
};
union ExtCpuid1EEbx {
uint32_t value;
struct {
uint32_t : 8,
threads_per_core : 8,
: 16;
} bits;
};
union XemXcr0Eax {
uint32_t value;
struct {
uint32_t x87 : 1,
sse : 1,
ymm : 1,
bndregs : 1,
bndcsr : 1,
opmask : 1,
zmm512 : 1,
zmm32 : 1,
: 24;
} bits;
};
protected:
static int _cpu;
static int _model;
static int _stepping;
static bool _has_intel_jcc_erratum;
static address _cpuinfo_segv_addr; // address of instruction which causes SEGV
static address _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
/*
* Update following files when declaring new flags:
* test/lib-test/jdk/test/whitebox/CPUInfoTest.java
* src/jdk.internal.vm.ci/share/classes/jdk.vm.ci.amd64/src/jdk/vm/ci/amd64/AMD64.java
*/
enum Feature_Flag : uint64_t {
#define CPU_FEATURE_FLAGS(decl) \
decl(CX8, "cx8", 0) /* next bits are from cpuid 1 (EDX) */ \
decl(CMOV, "cmov", 1) \
decl(FXSR, "fxsr", 2) \
decl(HT, "ht", 3) \
\
decl(MMX, "mmx", 4) \
decl(3DNOW_PREFETCH, "3dnowpref", 5) /* Processor supports 3dnow prefetch and prefetchw instructions */ \
/* may not necessarily support other 3dnow instructions */ \
decl(SSE, "sse", 6) \
decl(SSE2, "sse2", 7) \
\
decl(SSE3, "sse3", 8 ) /* SSE3 comes from cpuid 1 (ECX) */ \
decl(SSSE3, "ssse3", 9 ) \
decl(SSE4A, "sse4a", 10) \
decl(SSE4_1, "sse4.1", 11) \
\
decl(SSE4_2, "sse4.2", 12) \
decl(POPCNT, "popcnt", 13) \
decl(LZCNT, "lzcnt", 14) \
decl(TSC, "tsc", 15) \
\
decl(TSCINV_BIT, "tscinvbit", 16) \
decl(TSCINV, "tscinv", 17) \
decl(AVX, "avx", 18) \
decl(AVX2, "avx2", 19) \
\
decl(AES, "aes", 20) \
decl(ERMS, "erms", 21) /* enhanced 'rep movsb/stosb' instructions */ \
decl(CLMUL, "clmul", 22) /* carryless multiply for CRC */ \
decl(BMI1, "bmi1", 23) \
\
decl(BMI2, "bmi2", 24) \
decl(RTM, "rtm", 25) /* Restricted Transactional Memory instructions */ \
decl(ADX, "adx", 26) \
decl(AVX512F, "avx512f", 27) /* AVX 512bit foundation instructions */ \
\
decl(AVX512DQ, "avx512dq", 28) \
decl(AVX512PF, "avx512pf", 29) \
decl(AVX512ER, "avx512er", 30) \
decl(AVX512CD, "avx512cd", 31) \
\
decl(AVX512BW, "avx512bw", 32) /* Byte and word vector instructions */ \
decl(AVX512VL, "avx512vl", 33) /* EVEX instructions with smaller vector length */ \
decl(SHA, "sha", 34) /* SHA instructions */ \
decl(FMA, "fma", 35) /* FMA instructions */ \
\
decl(VZEROUPPER, "vzeroupper", 36) /* Vzeroupper instruction */ \
decl(AVX512_VPOPCNTDQ, "avx512_vpopcntdq", 37) /* Vector popcount */ \
decl(AVX512_VPCLMULQDQ, "avx512_vpclmulqdq", 38) /* Vector carryless multiplication */ \
decl(AVX512_VAES, "avx512_vaes", 39) /* Vector AES instruction */ \
\
decl(AVX512_VNNI, "avx512_vnni", 40) /* Vector Neural Network Instructions */ \
decl(FLUSH, "clflush", 41) /* flush instruction */ \
decl(FLUSHOPT, "clflushopt", 42) /* flusopth instruction */ \
decl(CLWB, "clwb", 43) /* clwb instruction */ \
\
decl(AVX512_VBMI2, "avx512_vbmi2", 44) /* VBMI2 shift left double instructions */ \
decl(AVX512_VBMI, "avx512_vbmi", 45) /* Vector BMI instructions */ \
decl(HV, "hv", 46) /* Hypervisor instructions */ \
decl(SERIALIZE, "serialize", 47) /* CPU SERIALIZE */ \
decl(RDTSCP, "rdtscp", 48) /* RDTSCP instruction */ \
decl(RDPID, "rdpid", 49) /* RDPID instruction */ \
decl(FSRM, "fsrm", 50) /* Fast Short REP MOV */ \
decl(GFNI, "gfni", 51) /* Vector GFNI instructions */ \
decl(AVX512_BITALG, "avx512_bitalg", 52) /* Vector sub-word popcount and bit gather instructions */\
decl(F16C, "f16c", 53) /* Half-precision and single precision FP conversion instructions*/ \
decl(PKU, "pku", 54) /* Protection keys for user-mode pages */ \
decl(OSPKE, "ospke", 55) /* OS enables protection keys */ \
decl(CET_IBT, "cet_ibt", 56) /* Control Flow Enforcement - Indirect Branch Tracking */ \
decl(CET_SS, "cet_ss", 57) /* Control Flow Enforcement - Shadow Stack */ \
decl(AVX512_IFMA, "avx512_ifma", 58) /* Integer Vector FMA instructions*/
#define DECLARE_CPU_FEATURE_FLAG(id, name, bit) CPU_##id = (1ULL << bit),
CPU_FEATURE_FLAGS(DECLARE_CPU_FEATURE_FLAG)
#undef DECLARE_CPU_FEATURE_FLAG
};
static const char* _features_names[];
enum Extended_Family {
// AMD
CPU_FAMILY_AMD_11H = 0x11,
// ZX
CPU_FAMILY_ZX_CORE_F6 = 6,
CPU_FAMILY_ZX_CORE_F7 = 7,
// Intel
CPU_FAMILY_INTEL_CORE = 6,
CPU_MODEL_NEHALEM = 0x1e,
CPU_MODEL_NEHALEM_EP = 0x1a,
CPU_MODEL_NEHALEM_EX = 0x2e,
CPU_MODEL_WESTMERE = 0x25,
CPU_MODEL_WESTMERE_EP = 0x2c,
CPU_MODEL_WESTMERE_EX = 0x2f,
CPU_MODEL_SANDYBRIDGE = 0x2a,
CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
CPU_MODEL_IVYBRIDGE_EP = 0x3a,
CPU_MODEL_HASWELL_E3 = 0x3c,
CPU_MODEL_HASWELL_E7 = 0x3f,
CPU_MODEL_BROADWELL = 0x3d,
CPU_MODEL_SKYLAKE = 0x55
};
// cpuid information block. All info derived from executing cpuid with
// various function numbers is stored here. Intel and AMD info is
// merged in this block: accessor methods disentangle it.
//
// The info block is laid out in subblocks of 4 dwords corresponding to
// eax, ebx, ecx and edx, whether or not they contain anything useful.
struct CpuidInfo {
// cpuid function 0
uint32_t std_max_function;
uint32_t std_vendor_name_0;
uint32_t std_vendor_name_1;
uint32_t std_vendor_name_2;
// cpuid function 1
StdCpuid1Eax std_cpuid1_eax;
StdCpuid1Ebx std_cpuid1_ebx;
StdCpuid1Ecx std_cpuid1_ecx;
StdCpuid1Edx std_cpuid1_edx;
// cpuid function 4 (deterministic cache parameters)
DcpCpuid4Eax dcp_cpuid4_eax;
DcpCpuid4Ebx dcp_cpuid4_ebx;
uint32_t dcp_cpuid4_ecx; // unused currently
uint32_t dcp_cpuid4_edx; // unused currently
// cpuid function 7 (structured extended features)
SefCpuid7Eax sef_cpuid7_eax;
SefCpuid7Ebx sef_cpuid7_ebx;
SefCpuid7Ecx sef_cpuid7_ecx;
SefCpuid7Edx sef_cpuid7_edx;
// cpuid function 0xB (processor topology)
// ecx = 0
uint32_t tpl_cpuidB0_eax;
TplCpuidBEbx tpl_cpuidB0_ebx;
uint32_t tpl_cpuidB0_ecx; // unused currently
uint32_t tpl_cpuidB0_edx; // unused currently
// ecx = 1
uint32_t tpl_cpuidB1_eax;
TplCpuidBEbx tpl_cpuidB1_ebx;
uint32_t tpl_cpuidB1_ecx; // unused currently
uint32_t tpl_cpuidB1_edx; // unused currently
// ecx = 2
uint32_t tpl_cpuidB2_eax;
TplCpuidBEbx tpl_cpuidB2_ebx;
uint32_t tpl_cpuidB2_ecx; // unused currently
uint32_t tpl_cpuidB2_edx; // unused currently
// cpuid function 0x80000000 // example, unused
uint32_t ext_max_function;
uint32_t ext_vendor_name_0;
uint32_t ext_vendor_name_1;
uint32_t ext_vendor_name_2;
// cpuid function 0x80000001
uint32_t ext_cpuid1_eax; // reserved
uint32_t ext_cpuid1_ebx; // reserved
ExtCpuid1Ecx ext_cpuid1_ecx;
ExtCpuid1Edx ext_cpuid1_edx;
// cpuid functions 0x80000002 thru 0x80000004: example, unused
uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
// cpuid function 0x80000005 // AMD L1, Intel reserved
uint32_t ext_cpuid5_eax; // unused currently
uint32_t ext_cpuid5_ebx; // reserved
ExtCpuid5Ex ext_cpuid5_ecx; // L1 data cache info (AMD)
ExtCpuid5Ex ext_cpuid5_edx; // L1 instruction cache info (AMD)
// cpuid function 0x80000007
uint32_t ext_cpuid7_eax; // reserved
uint32_t ext_cpuid7_ebx; // reserved
uint32_t ext_cpuid7_ecx; // reserved
ExtCpuid7Edx ext_cpuid7_edx; // tscinv
// cpuid function 0x80000008
uint32_t ext_cpuid8_eax; // unused currently
uint32_t ext_cpuid8_ebx; // reserved
ExtCpuid8Ecx ext_cpuid8_ecx;
uint32_t ext_cpuid8_edx; // reserved
// cpuid function 0x8000001E // AMD 17h
uint32_t ext_cpuid1E_eax;
ExtCpuid1EEbx ext_cpuid1E_ebx; // threads per core (AMD17h)
uint32_t ext_cpuid1E_ecx;
uint32_t ext_cpuid1E_edx; // unused currently
// extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
XemXcr0Eax xem_xcr0_eax;
uint32_t xem_xcr0_edx; // reserved
// Space to save ymm registers after signal handle
int ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
// Space to save zmm registers after signal handle
int zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31
};
private:
// The actual cpuid info block
static CpuidInfo _cpuid_info;
// Extractors and predicates
static uint32_t extended_cpu_family() {
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
return result;
}
static uint32_t extended_cpu_model() {
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
return result;
}
static uint32_t cpu_stepping() {
uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
return result;
}
static uint logical_processor_count() {
uint result = threads_per_core();
return result;
}
static bool compute_has_intel_jcc_erratum();
static uint64_t feature_flags();
static bool os_supports_avx_vectors();
static void get_processor_features();
public:
// Offsets for cpuid asm stub
static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
static ByteSize ext_cpuid1E_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1E_eax); }
static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); }
// The value used to check ymm register after signal handle
static int ymm_test_value() { return 0xCAFEBABE; }
static void get_cpu_info_wrapper();
static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
static bool is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
static address cpuinfo_cont_addr() { return _cpuinfo_cont_addr; }
static void clean_cpuFeatures() { _features = 0; }
static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX | CPU_VZEROUPPER ); }
static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 | CPU_VZEROUPPER ); }
// Initialization
static void initialize();
// Override Abstract_VM_Version implementation
static void print_platform_virtualization_info(outputStream*);
// Asserts
static void assert_is_initialized() {
assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
}
//
// Processor family:
// 3 - 386
// 4 - 486
// 5 - Pentium
// 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
// Pentium M, Core Solo, Core Duo, Core2 Duo
// family 6 model: 9, 13, 14, 15
// 0x0f - Pentium 4, Opteron
//
// Note: The cpu family should be used to select between
// instruction sequences which are valid on all Intel
// processors. Use the feature test functions below to
// determine whether a particular instruction is supported.
//
static int cpu_family() { return _cpu;}
static bool is_P6() { return cpu_family() >= 6; }
static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
static bool is_hygon() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x6F677948; } // 'ogyH'
static bool is_amd_family() { return is_amd() || is_hygon(); }
static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
static bool is_zx() { assert_is_initialized(); return (_cpuid_info.std_vendor_name_0 == 0x746e6543) || (_cpuid_info.std_vendor_name_0 == 0x68532020); } // 'tneC'||'hS '
static bool is_atom_family() { return ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || (extended_cpu_model() == 0x37) || (extended_cpu_model() == 0x4D))); } //Silvermont and Centerton
static bool is_knights_family() { return UseKNLSetting || ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || (extended_cpu_model() == 0x85))); } // Xeon Phi 3200/5200/7200 and Future Xeon Phi
static bool supports_processor_topology() {
return (_cpuid_info.std_max_function >= 0xB) &&
// eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
// Some cpus have max cpuid >= 0xB but do not support processor topology.
(((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
}
static uint cores_per_cpu();
static uint threads_per_core();
static intx L1_line_size();
static intx prefetch_data_size() {
return L1_line_size();
}
//
// Feature identification
//
static bool supports_cpuid() { return _features != 0; }
static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; }
static bool supports_cmov() { return (_features & CPU_CMOV) != 0; }
static bool supports_fxsr() { return (_features & CPU_FXSR) != 0; }
static bool supports_ht() { return (_features & CPU_HT) != 0; }
static bool supports_mmx() { return (_features & CPU_MMX) != 0; }
static bool supports_sse() { return (_features & CPU_SSE) != 0; }
static bool supports_sse2() { return (_features & CPU_SSE2) != 0; }
static bool supports_sse3() { return (_features & CPU_SSE3) != 0; }
static bool supports_ssse3() { return (_features & CPU_SSSE3)!= 0; }
static bool supports_sse4_1() { return (_features & CPU_SSE4_1) != 0; }
static bool supports_sse4_2() { return (_features & CPU_SSE4_2) != 0; }
static bool supports_popcnt() { return (_features & CPU_POPCNT) != 0; }
static bool supports_avx() { return (_features & CPU_AVX) != 0; }
static bool supports_avx2() { return (_features & CPU_AVX2) != 0; }
static bool supports_tsc() { return (_features & CPU_TSC) != 0; }
static bool supports_rdtscp() { return (_features & CPU_RDTSCP) != 0; }
static bool supports_rdpid() { return (_features & CPU_RDPID) != 0; }
static bool supports_aes() { return (_features & CPU_AES) != 0; }
static bool supports_erms() { return (_features & CPU_ERMS) != 0; }
static bool supports_fsrm() { return (_features & CPU_FSRM) != 0; }
static bool supports_clmul() { return (_features & CPU_CLMUL) != 0; }
static bool supports_rtm() { return (_features & CPU_RTM) != 0; }
static bool supports_bmi1() { return (_features & CPU_BMI1) != 0; }
static bool supports_bmi2() { return (_features & CPU_BMI2) != 0; }
static bool supports_adx() { return (_features & CPU_ADX) != 0; }
static bool supports_evex() { return (_features & CPU_AVX512F) != 0; }
static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; }
static bool supports_avx512ifma() { return (_features & CPU_AVX512_IFMA) != 0; }
static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; }
static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; }
static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; }
static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; }
static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; }
static bool supports_avx512vlbw() { return (supports_evex() && supports_avx512bw() && supports_avx512vl()); }
static bool supports_avx512bwdq() { return (supports_evex() && supports_avx512bw() && supports_avx512dq()); }
static bool supports_avx512vldq() { return (supports_evex() && supports_avx512dq() && supports_avx512vl()); }
static bool supports_avx512vlbwdq() { return (supports_evex() && supports_avx512vl() &&
supports_avx512bw() && supports_avx512dq()); }
static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); }
static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); }
static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); }
static bool supports_avxonly() { return ((supports_avx2() || supports_avx()) && !supports_evex()); }
static bool supports_sha() { return (_features & CPU_SHA) != 0; }
static bool supports_fma() { return (_features & CPU_FMA) != 0 && supports_avx(); }
static bool supports_vzeroupper() { return (_features & CPU_VZEROUPPER) != 0; }
static bool supports_avx512_vpopcntdq() { return (_features & CPU_AVX512_VPOPCNTDQ) != 0; }
static bool supports_avx512_vpclmulqdq() { return (_features & CPU_AVX512_VPCLMULQDQ) != 0; }
static bool supports_avx512_vaes() { return (_features & CPU_AVX512_VAES) != 0; }
static bool supports_gfni() { return (_features & CPU_GFNI) != 0; }
static bool supports_avx512_vnni() { return (_features & CPU_AVX512_VNNI) != 0; }
static bool supports_avx512_bitalg() { return (_features & CPU_AVX512_BITALG) != 0; }
static bool supports_avx512_vbmi() { return (_features & CPU_AVX512_VBMI) != 0; }
static bool supports_avx512_vbmi2() { return (_features & CPU_AVX512_VBMI2) != 0; }
static bool supports_hv() { return (_features & CPU_HV) != 0; }
static bool supports_serialize() { return (_features & CPU_SERIALIZE) != 0; }
static bool supports_f16c() { return (_features & CPU_F16C) != 0; }
static bool supports_pku() { return (_features & CPU_PKU) != 0; }
static bool supports_ospke() { return (_features & CPU_OSPKE) != 0; }
static bool supports_cet_ss() { return (_features & CPU_CET_SS) != 0; }
static bool supports_cet_ibt() { return (_features & CPU_CET_IBT) != 0; }
// Intel features
static bool is_intel_family_core() { return is_intel() &&
extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
static bool is_intel_skylake() { return is_intel_family_core() &&
extended_cpu_model() == CPU_MODEL_SKYLAKE; }
static int avx3_threshold();
static bool is_intel_tsc_synched_at_init();
// This checks if the JVM is potentially affected by an erratum on Intel CPUs (SKX102)
// that causes unpredictable behaviour when jcc crosses 64 byte boundaries. Its microcode
// mitigation causes regressions when jumps or fused conditional branches cross or end at
// 32 byte boundaries.
static bool has_intel_jcc_erratum() { return _has_intel_jcc_erratum; }
// AMD features
static bool supports_3dnow_prefetch() { return (_features & CPU_3DNOW_PREFETCH) != 0; }
static bool supports_lzcnt() { return (_features & CPU_LZCNT) != 0; }
static bool supports_sse4a() { return (_features & CPU_SSE4A) != 0; }
static bool is_amd_Barcelona() { return is_amd() &&
extended_cpu_family() == CPU_FAMILY_AMD_11H; }
// Intel and AMD newer cores support fast timestamps well
static bool supports_tscinv_bit() {
return (_features & CPU_TSCINV_BIT) != 0;
}
static bool supports_tscinv() {
return (_features & CPU_TSCINV) != 0;
}
// Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
static bool has_fast_idiv() { return is_intel() && cpu_family() == 6 &&
supports_sse3() && _model != 0x1C; }
static bool supports_compare_and_exchange() { return true; }
static intx allocate_prefetch_distance(bool use_watermark_prefetch);
// SSE2 and later processors implement a 'pause' instruction
// that can be used for efficient implementation of
// the intrinsic for java.lang.Thread.onSpinWait()
static bool supports_on_spin_wait() { return supports_sse2(); }
// x86_64 supports fast class initialization checks for static methods.
static bool supports_fast_class_init_checks() {
return LP64_ONLY(true) NOT_LP64(false); // not implemented on x86_32
}
constexpr static bool supports_stack_watermark_barrier() {
return true;
}
// there are several insns to force cache line sync to memory which
// we can use to ensure mapped non-volatile memory is up to date with
// pending in-cache changes.
//
// 64 bit cpus always support clflush which writes back and evicts
// on 32 bit cpus support is recorded via a feature flag
//
// clflushopt is optional and acts like clflush except it does
// not synchronize with other memory ops. it needs a preceding
// and trailing StoreStore fence
//
// clwb is an optional intel-specific instruction which
// writes back without evicting the line. it also does not
// synchronize with other memory ops. so, it needs preceding
// and trailing StoreStore fences.
#ifdef _LP64
static bool supports_clflush(); // Can't inline due to header file conflict
#else
static bool supports_clflush() { return ((_features & CPU_FLUSH) != 0); }
#endif // _LP64
// Note: CPU_FLUSHOPT and CPU_CLWB bits should always be zero for 32-bit
static bool supports_clflushopt() { return ((_features & CPU_FLUSHOPT) != 0); }
static bool supports_clwb() { return ((_features & CPU_CLWB) != 0); }
// Old CPUs perform lea on AGU which causes additional latency transferring the
// value from/to ALU for other operations
static bool supports_fast_2op_lea() {
return (is_intel() && supports_avx()) || // Sandy Bridge and above
(is_amd() && supports_avx()); // Jaguar and Bulldozer and above
}
// Pre Icelake Intels suffer inefficiency regarding 3-operand lea, which contains
// all of base register, index register and displacement immediate, with 3 latency.
// Note that when the address contains no displacement but the base register is
// rbp or r13, the machine code must contain a zero displacement immediate,
// effectively transform a 2-operand lea into a 3-operand lea. This can be
// replaced by add-add or lea-add
static bool supports_fast_3op_lea() {
return supports_fast_2op_lea() &&
((is_intel() && supports_clwb() && !is_intel_skylake()) || // Icelake and above
is_amd());
}
#ifdef __APPLE__
// Is the CPU running emulated (for example macOS Rosetta running x86_64 code on M1 ARM (aarch64)
static bool is_cpu_emulated();
#endif
// support functions for virtualization detection
private:
static void check_virtualizations();
static const char* cpu_family_description(void);
static const char* cpu_model_description(void);
static const char* cpu_brand(void);
static const char* cpu_brand_string(void);
static int cpu_type_description(char* const buf, size_t buf_len);
static int cpu_detailed_description(char* const buf, size_t buf_len);
static int cpu_extended_brand_string(char* const buf, size_t buf_len);
static bool cpu_is_em64t(void);
static bool is_netburst(void);
// Returns bytes written excluding termninating null byte.
static size_t cpu_write_support_string(char* const buf, size_t buf_len);
static void resolve_cpu_information_details(void);
static int64_t max_qualified_cpu_freq_from_brand_string(void);
public:
// Offsets for cpuid asm stub brand string
static ByteSize proc_name_0_offset() { return byte_offset_of(CpuidInfo, proc_name_0); }
static ByteSize proc_name_1_offset() { return byte_offset_of(CpuidInfo, proc_name_1); }
static ByteSize proc_name_2_offset() { return byte_offset_of(CpuidInfo, proc_name_2); }
static ByteSize proc_name_3_offset() { return byte_offset_of(CpuidInfo, proc_name_3); }
static ByteSize proc_name_4_offset() { return byte_offset_of(CpuidInfo, proc_name_4); }
static ByteSize proc_name_5_offset() { return byte_offset_of(CpuidInfo, proc_name_5); }
static ByteSize proc_name_6_offset() { return byte_offset_of(CpuidInfo, proc_name_6); }
static ByteSize proc_name_7_offset() { return byte_offset_of(CpuidInfo, proc_name_7); }
static ByteSize proc_name_8_offset() { return byte_offset_of(CpuidInfo, proc_name_8); }
static ByteSize proc_name_9_offset() { return byte_offset_of(CpuidInfo, proc_name_9); }
static ByteSize proc_name_10_offset() { return byte_offset_of(CpuidInfo, proc_name_10); }
static ByteSize proc_name_11_offset() { return byte_offset_of(CpuidInfo, proc_name_11); }
static int64_t maximum_qualified_cpu_frequency(void);
static bool supports_tscinv_ext(void);
static void initialize_tsc();
static void initialize_cpu_information(void);
};
#endif // CPU_X86_VM_VERSION_X86_HPP
¤ Dauer der Verarbeitung: 0.11 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|