/*
* Copyright (c) 2020, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/codeBuffer.hpp"
#include "asm/macroAssembler.hpp"
#include "opto/block.hpp"
#include "opto/constantTable.hpp"
#include "opto/machnode.hpp"
#include "opto/output.hpp"
//=============================================================================
// Two Constant's are equal when the type and the value are equal.
bool ConstantTable::Constant::operator==(const Constant& other) {
if (type() != other.type() ) return false;
if (can_be_reused() != other.can_be_reused()) return false;
if (is_array() || other.is_array()) {
if (is_array() != other.is_array() ||
get_array()->length() != other.get_array()->length()) {
return false;
}
for (int i = 0; i < get_array()->length(); i++) {
jvalue ele1 = get_array()->at(i);
jvalue ele2 = other.get_array()->at(i);
bool is_eq;
switch (type()) {
case T_BOOLEAN: is_eq = ele1.z == ele2.z; break;
case T_BYTE: is_eq = ele1.b == ele2.b; break;
case T_CHAR: is_eq = ele1.c == ele2.c; break;
case T_SHORT: is_eq = ele1.s == ele2.s; break;
case T_INT: is_eq = ele1.i == ele2.i; break;
case T_LONG: is_eq = ele1.j == ele2.j; break;
case T_FLOAT: is_eq = jint_cast(ele1.f) == jint_cast(ele2.f); break;
case T_DOUBLE: is_eq = jlong_cast(ele1.d) == jlong_cast(ele2.d); break;
default: ShouldNotReachHere(); is_eq = false;
}
if (!is_eq) {
return false;
}
}
return true;
}
// For floating point values we compare the bit pattern.
switch (type()) {
case T_INT: return (_v._value.i == other._v._value.i);
case T_FLOAT: return jint_cast(_v._value.f) == jint_cast(other._v._value.f);
case T_LONG: return (_v._value.j == other._v._value.j);
case T_DOUBLE: return jlong_cast(_v._value.d) == jlong_cast(other._v._value.d);
case T_OBJECT:
case T_ADDRESS: return (_v._value.l == other._v._value.l);
case T_VOID: return (_v._value.l == other._v._value.l); // jump-table entries
case T_METADATA: return (_v._metadata == other._v._metadata);
default: ShouldNotReachHere(); return false;
}
}
int ConstantTable::qsort_comparator(Constant* a, Constant* b) {
// sort descending
if (a->freq() > b->freq()) return -1;
if (a->freq() < b->freq()) return 1;
return 0;
}
static int constant_size(ConstantTable::Constant* con) {
if (con->is_array()) {
return type2aelembytes(con->type()) * con->get_array()->length();
}
switch (con->type()) {
case T_INT: return sizeof(jint );
case T_LONG: return sizeof(jlong );
case T_FLOAT: return sizeof(jfloat );
case T_DOUBLE: return sizeof(jdouble);
case T_METADATA: return sizeof(Metadata*);
// We use T_VOID as marker for jump-table entries (labels) which
// need an internal word relocation.
case T_VOID:
case T_ADDRESS:
case T_OBJECT: return sizeof(jobject);
default:
ShouldNotReachHere();
return -1;
}
}
void ConstantTable::calculate_offsets_and_size() {
// First, sort the array by frequencies.
_constants.sort(qsort_comparator);
#ifdef ASSERT
// Make sure all jump-table entries were sorted to the end of the
// array (they have a negative frequency).
bool found_void = false;
for (int i = 0; i < _constants.length(); i++) {
Constant con = _constants.at(i);
if (con.type() == T_VOID)
found_void = true; // jump-tables
else
assert(!found_void, "wrong sorting");
}
#endif
int offset = 0;
for (int i = 0; i < _constants.length(); i++) {
Constant* con = _constants.adr_at(i);
// Align offset for type.
int typesize = constant_size(con);
assert(typesize <= 8 || con->is_array(), "sanity");
offset = align_up(offset, con->alignment());
con->set_offset(offset); // set constant's offset
if (con->type() == T_VOID) {
MachConstantNode* n = (MachConstantNode*) con->get_jobject();
offset = offset + typesize * n->outcnt(); // expand jump-table
} else {
offset = offset + typesize;
}
}
// Align size up to the next section start (which is insts; see
// CodeBuffer::align_at_start).
assert(_size == -1, "already set?");
_size = align_up(offset, (int)CodeEntryAlignment);
}
bool ConstantTable::emit(CodeBuffer& cb) const {
MacroAssembler _masm(&cb);
for (int i = 0; i < _constants.length(); i++) {
Constant con = _constants.at(i);
address constant_addr = NULL;
if (con.is_array()) {
constant_addr = _masm.array_constant(con.type(), con.get_array(), con.alignment());
} else {
switch (con.type()) {
case T_INT: constant_addr = _masm.int_constant( con.get_jint() ); break;
case T_LONG: constant_addr = _masm.long_constant( con.get_jlong() ); break;
case T_FLOAT: constant_addr = _masm.float_constant( con.get_jfloat() ); break;
case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
case T_OBJECT: {
jobject obj = con.get_jobject();
int oop_index = _masm.oop_recorder()->find_index(obj);
constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
break;
}
case T_ADDRESS: {
address addr = (address) con.get_jobject();
constant_addr = _masm.address_constant(addr);
break;
}
// We use T_VOID as marker for jump-table entries (labels) which
// need an internal word relocation.
case T_VOID: {
MachConstantNode* n = (MachConstantNode*) con.get_jobject();
// Fill the jump-table with a dummy word. The real value is
// filled in later in fill_jump_table.
address dummy = (address) n;
constant_addr = _masm.address_constant(dummy);
if (constant_addr == NULL) {
return false;
}
assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
"must be: %d == %d", (int)(constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
// Expand jump-table
address last_addr = NULL;
for (uint j = 1; j < n->outcnt(); j++) {
last_addr = _masm.address_constant(dummy + j);
if (last_addr == NULL) {
return false;
}
}
#ifdef ASSERT
address start = _masm.code()->consts()->start();
address new_constant_addr = last_addr - ((n->outcnt() - 1) * sizeof(address));
// Expanding the jump-table could result in an expansion of the const code section.
// In that case, we need to check if the new constant address matches the offset.
assert((constant_addr - start == con.offset()) || (new_constant_addr - start == con.offset()),
"must be: %d == %d or %d == %d (after an expansion)", (int)(constant_addr - start), (int)(con.offset()),
(int)(new_constant_addr - start), (int)(con.offset()));
#endif
continue; // Loop
}
case T_METADATA: {
Metadata* obj = con.get_metadata();
int metadata_index = _masm.oop_recorder()->find_index(obj);
constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
break;
}
default: ShouldNotReachHere();
}
}
if (constant_addr == NULL) {
return false;
}
assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
"must be: %d == %d", (int)(constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
}
return true;
}
int ConstantTable::find_offset(Constant& con) const {
int idx = _constants.find(con);
guarantee(idx != -1, "constant must be in constant table");
int offset = _constants.at(idx).offset();
guarantee(offset != -1, "constant table not emitted yet?");
return offset;
}
void ConstantTable::add(Constant& con) {
if (con.can_be_reused()) {
int idx = _constants.find(con);
if (idx != -1 && _constants.at(idx).can_be_reused()) {
_constants.adr_at(idx)->inc_freq(con.freq()); // increase the frequency by the current value
return;
}
}
(void) _constants.append(con);
}
ConstantTable::Constant ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
Block* b = Compile::current()->cfg()->get_block_for_node(n);
Constant con(type, value, b->_freq);
add(con);
return con;
}
ConstantTable::Constant ConstantTable::add(Metadata* metadata) {
Constant con(metadata);
add(con);
return con;
}
ConstantTable::Constant ConstantTable::add(MachConstantNode* n, BasicType bt,
GrowableArray<jvalue>* array, int alignment) {
Constant con(bt, array, alignment);
add(con);
return con;
}
ConstantTable::Constant ConstantTable::add(MachConstantNode* n, BasicType bt,
GrowableArray<jvalue>* array) {
return add(n, bt, array, array->length() * type2aelembytes(bt));
}
ConstantTable::Constant ConstantTable::add(MachConstantNode* n, MachOper* oper) {
jvalue value;
BasicType type = oper->type()->basic_type();
switch (type) {
case T_LONG: value.j = oper->constantL(); break;
case T_FLOAT: value.f = oper->constantF(); break;
case T_DOUBLE: value.d = oper->constantD(); break;
case T_OBJECT:
case T_ADDRESS: value.l = (jobject) oper->constant(); break;
case T_METADATA: return add((Metadata*)oper->constant()); break;
default: guarantee(false, "unhandled type: %s", type2name(type));
}
return add(n, type, value);
}
ConstantTable::Constant ConstantTable::add_jump_table(MachConstantNode* n) {
jvalue value;
// We can use the node pointer here to identify the right jump-table
// as this method is called from Compile::Fill_buffer right before
// the MachNodes are emitted and the jump-table is filled (means the
// MachNode pointers do not change anymore).
value.l = (jobject) n;
Constant con(T_VOID, value, next_jump_table_freq(), false); // Labels of a jump-table cannot be reused.
add(con);
return con;
}
void ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
// If called from Compile::scratch_emit_size do nothing.
if (Compile::current()->output()->in_scratch_emit_size()) return;
assert(labels.is_nonempty(), "must be");
assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
// Since MachConstantNode::constant_offset() also contains
// table_base_offset() we need to subtract the table_base_offset()
// to get the plain offset into the constant table.
int offset = n->constant_offset() - table_base_offset();
MacroAssembler _masm(&cb);
address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
for (uint i = 0; i < n->outcnt(); i++) {
address* constant_addr = &jump_table_base[i];
assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
*constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
}
}
¤ Dauer der Verarbeitung: 0.19 Sekunden
(vorverarbeitet)
¤
|
schauen Sie vor die Tür
Fenster
Die Firma ist wie angegeben erreichbar.
Die farbliche Syntaxdarstellung ist noch experimentell.
|