/*
* Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/c2/barrierSetC2.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "oops/compressedOops.hpp"
#include "opto/ad.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/idealGraphPrinter.hpp"
#include "opto/matcher.hpp"
#include "opto/memnode.hpp"
#include "opto/movenode.hpp"
#include "opto/opcodes.hpp"
#include "opto/regmask.hpp"
#include "opto/rootnode.hpp"
#include "opto/runtime.hpp"
#include "opto/type.hpp"
#include "opto/vectornode.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "utilities/align.hpp"
OptoReg::Name OptoReg::c_frame_pointer;
const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
RegMask Matcher::mreg2regmask[_last_Mach_Reg];
RegMask Matcher::caller_save_regmask;
RegMask Matcher::caller_save_regmask_exclude_soe;
RegMask Matcher::mh_caller_save_regmask;
RegMask Matcher::mh_caller_save_regmask_exclude_soe;
RegMask Matcher::STACK_ONLY_mask;
RegMask Matcher::c_frame_ptr_mask;
const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
//---------------------------Matcher-------------------------------------------
Matcher::Matcher()
: PhaseTransform( Phase::Ins_Select ),
_states_arena(Chunk::medium_size, mtCompiler),
_visited(&_states_arena),
_shared(&_states_arena),
_dontcare(&_states_arena),
_reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
_swallowed(swallowed),
_begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
_end_inst_chain_rule(_END_INST_CHAIN_RULE),
_must_clone(must_clone),
_shared_nodes(C->comp_arena()),
#ifndef PRODUCT
_old2new_map(C->comp_arena()),
_new2old_map(C->comp_arena()),
_reused(C->comp_arena()),
#endif // !PRODUCT
_allocation_started(false),
_ruleName(ruleName),
_register_save_policy(register_save_policy),
_c_reg_save_policy(c_reg_save_policy),
_register_save_type(register_save_type) {
C->set_matcher(this);
idealreg2spillmask [Op_RegI] = NULL;
idealreg2spillmask [Op_RegN] = NULL;
idealreg2spillmask [Op_RegL] = NULL;
idealreg2spillmask [Op_RegF] = NULL;
idealreg2spillmask [Op_RegD] = NULL;
idealreg2spillmask [Op_RegP] = NULL;
idealreg2spillmask [Op_VecA] = NULL;
idealreg2spillmask [Op_VecS] = NULL;
idealreg2spillmask [Op_VecD] = NULL;
idealreg2spillmask [Op_VecX] = NULL;
idealreg2spillmask [Op_VecY] = NULL;
idealreg2spillmask [Op_VecZ] = NULL;
idealreg2spillmask [Op_RegFlags] = NULL;
idealreg2spillmask [Op_RegVectMask] = NULL;
idealreg2debugmask [Op_RegI] = NULL;
idealreg2debugmask [Op_RegN] = NULL;
idealreg2debugmask [Op_RegL] = NULL;
idealreg2debugmask [Op_RegF] = NULL;
idealreg2debugmask [Op_RegD] = NULL;
idealreg2debugmask [Op_RegP] = NULL;
idealreg2debugmask [Op_VecA] = NULL;
idealreg2debugmask [Op_VecS] = NULL;
idealreg2debugmask [Op_VecD] = NULL;
idealreg2debugmask [Op_VecX] = NULL;
idealreg2debugmask [Op_VecY] = NULL;
idealreg2debugmask [Op_VecZ] = NULL;
idealreg2debugmask [Op_RegFlags] = NULL;
idealreg2debugmask [Op_RegVectMask] = NULL;
idealreg2mhdebugmask[Op_RegI] = NULL;
idealreg2mhdebugmask[Op_RegN] = NULL;
idealreg2mhdebugmask[Op_RegL] = NULL;
idealreg2mhdebugmask[Op_RegF] = NULL;
idealreg2mhdebugmask[Op_RegD] = NULL;
idealreg2mhdebugmask[Op_RegP] = NULL;
idealreg2mhdebugmask[Op_VecA] = NULL;
idealreg2mhdebugmask[Op_VecS] = NULL;
idealreg2mhdebugmask[Op_VecD] = NULL;
idealreg2mhdebugmask[Op_VecX] = NULL;
idealreg2mhdebugmask[Op_VecY] = NULL;
idealreg2mhdebugmask[Op_VecZ] = NULL;
idealreg2mhdebugmask[Op_RegFlags] = NULL;
idealreg2mhdebugmask[Op_RegVectMask] = NULL;
debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node
}
//------------------------------warp_incoming_stk_arg------------------------
// This warps a VMReg into an OptoReg::Name
OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
OptoReg::Name warped;
if( reg->is_stack() ) { // Stack slot argument?
warped = OptoReg::add(_old_SP, reg->reg2stack() );
warped = OptoReg::add(warped, C->out_preserve_stack_slots());
if( warped >= _in_arg_limit )
_in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
if (!RegMask::can_represent_arg(warped)) {
// the compiler cannot represent this method's calling sequence
C->record_method_not_compilable("unsupported incoming calling sequence");
return OptoReg::Bad;
}
return warped;
}
return OptoReg::as_OptoReg(reg);
}
//---------------------------compute_old_SP------------------------------------
OptoReg::Name Compile::compute_old_SP() {
int fixed = fixed_slots();
int preserve = in_preserve_stack_slots();
return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots()));
}
#ifdef ASSERT
void Matcher::verify_new_nodes_only(Node* xroot) {
// Make sure that the new graph only references new nodes
ResourceMark rm;
Unique_Node_List worklist;
VectorSet visited;
worklist.push(xroot);
while (worklist.size() > 0) {
Node* n = worklist.pop();
visited.set(n->_idx);
assert(C->node_arena()->contains(n), "dead node");
for (uint j = 0; j < n->req(); j++) {
Node* in = n->in(j);
if (in != NULL) {
assert(C->node_arena()->contains(in), "dead node");
if (!visited.test(in->_idx)) {
worklist.push(in);
}
}
}
}
}
#endif
//---------------------------match---------------------------------------------
void Matcher::match( ) {
if( MaxLabelRootDepth < 100 ) { // Too small?
assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
MaxLabelRootDepth = 100;
}
// One-time initialization of some register masks.
init_spill_mask( C->root()->in(1) );
_return_addr_mask = return_addr();
#ifdef _LP64
// Pointers take 2 slots in 64-bit land
_return_addr_mask.Insert(OptoReg::add(return_addr(),1));
#endif
// Map a Java-signature return type into return register-value
// machine registers for 0, 1 and 2 returned values.
const TypeTuple *range = C->tf()->range();
if( range->cnt() > TypeFunc::Parms ) { // If not a void function
// Get ideal-register return type
uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
// Get machine return register
uint sop = C->start()->Opcode();
OptoRegPair regs = return_value(ireg);
// And mask for same
_return_value_mask = RegMask(regs.first());
if( OptoReg::is_valid(regs.second()) )
_return_value_mask.Insert(regs.second());
}
// ---------------
// Frame Layout
// Need the method signature to determine the incoming argument types,
// because the types determine which registers the incoming arguments are
// in, and this affects the matched code.
const TypeTuple *domain = C->tf()->domain();
uint argcnt = domain->cnt() - TypeFunc::Parms;
BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
_parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
_calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
uint i;
for( i = 0; i<argcnt; i++ ) {
sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
}
// Pass array of ideal registers and length to USER code (from the AD file)
// that will convert this to an array of register numbers.
const StartNode *start = C->start();
start->calling_convention( sig_bt, vm_parm_regs, argcnt );
#ifdef ASSERT
// Sanity check users' calling convention. Real handy while trying to
// get the initial port correct.
{ for (uint i = 0; i<argcnt; i++) {
if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
_parm_regs[i].set_bad();
continue;
}
VMReg parm_reg = vm_parm_regs[i].first();
assert(parm_reg->is_valid(), "invalid arg?");
if (parm_reg->is_reg()) {
OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
assert(can_be_java_arg(opto_parm_reg) ||
C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
opto_parm_reg == inline_cache_reg(),
"parameters in register must be preserved by runtime stubs");
}
for (uint j = 0; j < i; j++) {
assert(parm_reg != vm_parm_regs[j].first(),
"calling conv. must produce distinct regs");
}
}
}
#endif
// Do some initial frame layout.
// Compute the old incoming SP (may be called FP) as
// OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
_old_SP = C->compute_old_SP();
assert( is_even(_old_SP), "must be even" );
// Compute highest incoming stack argument as
// _old_SP + out_preserve_stack_slots + incoming argument size.
_in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
assert( is_even(_in_arg_limit), "out_preserve must be even" );
for( i = 0; i < argcnt; i++ ) {
// Permit args to have no register
_calling_convention_mask[i].Clear();
if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
_parm_regs[i].set_bad();
continue;
}
// calling_convention returns stack arguments as a count of
// slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
// the allocators point of view, taking into account all the
// preserve area, locks & pad2.
OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
if( OptoReg::is_valid(reg1))
_calling_convention_mask[i].Insert(reg1);
OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
if( OptoReg::is_valid(reg2))
_calling_convention_mask[i].Insert(reg2);
// Saved biased stack-slot register number
_parm_regs[i].set_pair(reg2, reg1);
}
// Finally, make sure the incoming arguments take up an even number of
// words, in case the arguments or locals need to contain doubleword stack
// slots. The rest of the system assumes that stack slot pairs (in
// particular, in the spill area) which look aligned will in fact be
// aligned relative to the stack pointer in the target machine. Double
// stack slots will always be allocated aligned.
_new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong));
// Compute highest outgoing stack argument as
// _new_SP + out_preserve_stack_slots + max(outgoing argument size).
_out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
assert( is_even(_out_arg_limit), "out_preserve must be even" );
if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
// the compiler cannot represent this method's calling sequence
C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
}
if (C->failing()) return; // bailed out on incoming arg failure
// ---------------
// Collect roots of matcher trees. Every node for which
// _shared[_idx] is cleared is guaranteed to not be shared, and thus
// can be a valid interior of some tree.
find_shared( C->root() );
find_shared( C->top() );
C->print_method(PHASE_BEFORE_MATCHING, 1);
// Create new ideal node ConP #NULL even if it does exist in old space
// to avoid false sharing if the corresponding mach node is not used.
// The corresponding mach node is only used in rare cases for derived
// pointers.
Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
// Swap out to old-space; emptying new-space
Arena *old = C->node_arena()->move_contents(C->old_arena());
// Save debug and profile information for nodes in old space:
_old_node_note_array = C->node_note_array();
if (_old_node_note_array != NULL) {
C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
(C->comp_arena(), _old_node_note_array->length(),
0, NULL));
}
// Pre-size the new_node table to avoid the need for range checks.
grow_new_node_array(C->unique());
// Reset node counter so MachNodes start with _idx at 0
int live_nodes = C->live_nodes();
C->set_unique(0);
C->reset_dead_node_list();
// Recursively match trees from old space into new space.
// Correct leaves of new-space Nodes; they point to old-space.
_visited.clear();
C->set_cached_top_node(xform( C->top(), live_nodes ));
if (!C->failing()) {
Node* xroot = xform( C->root(), 1 );
if (xroot == NULL) {
Matcher::soft_match_failure(); // recursive matching process failed
C->record_method_not_compilable("instruction match failed");
} else {
// During matching shared constants were attached to C->root()
// because xroot wasn't available yet, so transfer the uses to
// the xroot.
for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
Node* n = C->root()->fast_out(j);
if (C->node_arena()->contains(n)) {
assert(n->in(0) == C->root(), "should be control user");
n->set_req(0, xroot);
--j;
--jmax;
}
}
// Generate new mach node for ConP #NULL
assert(new_ideal_null != NULL, "sanity");
_mach_null = match_tree(new_ideal_null);
// Don't set control, it will confuse GCM since there are no uses.
// The control will be set when this node is used first time
// in find_base_for_derived().
assert(_mach_null != NULL, "");
C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
#ifdef ASSERT
verify_new_nodes_only(xroot);
#endif
}
}
if (C->top() == NULL || C->root() == NULL) {
C->record_method_not_compilable("graph lost"); // %%% cannot happen?
}
if (C->failing()) {
// delete old;
old->destruct_contents();
return;
}
assert( C->top(), "" );
assert( C->root(), "" );
validate_null_checks();
// Now smoke old-space
NOT_DEBUG( old->destruct_contents() );
// ------------------------
// Set up save-on-entry registers.
Fixup_Save_On_Entry( );
{ // Cleanup mach IR after selection phase is over.
Compile::TracePhase tp("postselect_cleanup", &timers[_t_postselect_cleanup]);
do_postselect_cleanup();
if (C->failing()) return;
assert(verify_after_postselect_cleanup(), "");
}
}
//------------------------------Fixup_Save_On_Entry----------------------------
// The stated purpose of this routine is to take care of save-on-entry
// registers. However, the overall goal of the Match phase is to convert into
// machine-specific instructions which have RegMasks to guide allocation.
// So what this procedure really does is put a valid RegMask on each input
// to the machine-specific variations of all Return, TailCall and Halt
// instructions. It also adds edgs to define the save-on-entry values (and of
// course gives them a mask).
static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
// Do all the pre-defined register masks
rms[TypeFunc::Control ] = RegMask::Empty;
rms[TypeFunc::I_O ] = RegMask::Empty;
rms[TypeFunc::Memory ] = RegMask::Empty;
rms[TypeFunc::ReturnAdr] = ret_adr;
rms[TypeFunc::FramePtr ] = fp;
return rms;
}
const int Matcher::scalable_predicate_reg_slots() {
assert(Matcher::has_predicated_vectors() && Matcher::supports_scalable_vector(),
"scalable predicate vector should be supported");
int vector_reg_bit_size = Matcher::scalable_vector_reg_size(T_BYTE) << LogBitsPerByte;
// We assume each predicate register is one-eighth of the size of
// scalable vector register, one mask bit per vector byte.
int predicate_reg_bit_size = vector_reg_bit_size >> 3;
// Compute number of slots which is required when scalable predicate
// register is spilled. E.g. if scalable vector register is 640 bits,
// predicate register is 80 bits, which is 2.5 * slots.
// We will round up the slot number to power of 2, which is required
// by find_first_set().
int slots = predicate_reg_bit_size & (BitsPerInt - 1)
? (predicate_reg_bit_size >> LogBitsPerInt) + 1
: predicate_reg_bit_size >> LogBitsPerInt;
return round_up_power_of_2(slots);
}
#define NOF_STACK_MASKS (3*13)
// Create the initial stack mask used by values spilling to the stack.
// Disallow any debug info in outgoing argument areas by setting the
// initial mask accordingly.
void Matcher::init_first_stack_mask() {
// Allocate storage for spill masks as masks for the appropriate load type.
RegMask *rms = (RegMask*)C->comp_arena()->AmallocWords(sizeof(RegMask) * NOF_STACK_MASKS);
// Initialize empty placeholder masks into the newly allocated arena
for (int i = 0; i < NOF_STACK_MASKS; i++) {
new (rms + i) RegMask();
}
idealreg2spillmask [Op_RegN] = &rms[0];
idealreg2spillmask [Op_RegI] = &rms[1];
idealreg2spillmask [Op_RegL] = &rms[2];
idealreg2spillmask [Op_RegF] = &rms[3];
idealreg2spillmask [Op_RegD] = &rms[4];
idealreg2spillmask [Op_RegP] = &rms[5];
idealreg2debugmask [Op_RegN] = &rms[6];
idealreg2debugmask [Op_RegI] = &rms[7];
idealreg2debugmask [Op_RegL] = &rms[8];
idealreg2debugmask [Op_RegF] = &rms[9];
idealreg2debugmask [Op_RegD] = &rms[10];
idealreg2debugmask [Op_RegP] = &rms[11];
idealreg2mhdebugmask[Op_RegN] = &rms[12];
idealreg2mhdebugmask[Op_RegI] = &rms[13];
idealreg2mhdebugmask[Op_RegL] = &rms[14];
idealreg2mhdebugmask[Op_RegF] = &rms[15];
idealreg2mhdebugmask[Op_RegD] = &rms[16];
idealreg2mhdebugmask[Op_RegP] = &rms[17];
idealreg2spillmask [Op_VecA] = &rms[18];
idealreg2spillmask [Op_VecS] = &rms[19];
idealreg2spillmask [Op_VecD] = &rms[20];
idealreg2spillmask [Op_VecX] = &rms[21];
idealreg2spillmask [Op_VecY] = &rms[22];
idealreg2spillmask [Op_VecZ] = &rms[23];
idealreg2debugmask [Op_VecA] = &rms[24];
idealreg2debugmask [Op_VecS] = &rms[25];
idealreg2debugmask [Op_VecD] = &rms[26];
idealreg2debugmask [Op_VecX] = &rms[27];
idealreg2debugmask [Op_VecY] = &rms[28];
idealreg2debugmask [Op_VecZ] = &rms[29];
idealreg2mhdebugmask[Op_VecA] = &rms[30];
idealreg2mhdebugmask[Op_VecS] = &rms[31];
idealreg2mhdebugmask[Op_VecD] = &rms[32];
idealreg2mhdebugmask[Op_VecX] = &rms[33];
idealreg2mhdebugmask[Op_VecY] = &rms[34];
idealreg2mhdebugmask[Op_VecZ] = &rms[35];
idealreg2spillmask [Op_RegVectMask] = &rms[36];
idealreg2debugmask [Op_RegVectMask] = &rms[37];
idealreg2mhdebugmask[Op_RegVectMask] = &rms[38];
OptoReg::Name i;
// At first, start with the empty mask
C->FIRST_STACK_mask().Clear();
// Add in the incoming argument area
OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
C->FIRST_STACK_mask().Insert(i);
}
// Add in all bits past the outgoing argument area
guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
"must be able to represent all call arguments in reg mask");
OptoReg::Name init = _out_arg_limit;
for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
C->FIRST_STACK_mask().Insert(i);
}
// Finally, set the "infinite stack" bit.
C->FIRST_STACK_mask().set_AllStack();
// Make spill masks. Registers for their class, plus FIRST_STACK_mask.
RegMask aligned_stack_mask = C->FIRST_STACK_mask();
// Keep spill masks aligned.
aligned_stack_mask.clear_to_pairs();
assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
RegMask scalable_stack_mask = aligned_stack_mask;
*idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
#ifdef _LP64
*idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
#else
idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
#endif
*idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
*idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
*idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
*idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
if (Matcher::has_predicated_vectors()) {
*idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask];
idealreg2spillmask[Op_RegVectMask]->OR(aligned_stack_mask);
} else {
*idealreg2spillmask[Op_RegVectMask] = RegMask::Empty;
}
if (Matcher::vector_size_supported(T_BYTE,4)) {
*idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
} else {
*idealreg2spillmask[Op_VecS] = RegMask::Empty;
}
if (Matcher::vector_size_supported(T_FLOAT,2)) {
// For VecD we need dual alignment and 8 bytes (2 slots) for spills.
// RA guarantees such alignment since it is needed for Double and Long values.
*idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
} else {
*idealreg2spillmask[Op_VecD] = RegMask::Empty;
}
if (Matcher::vector_size_supported(T_FLOAT,4)) {
// For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
//
// RA can use input arguments stack slots for spills but until RA
// we don't know frame size and offset of input arg stack slots.
//
// Exclude last input arg stack slots to avoid spilling vectors there
// otherwise vector spills could stomp over stack slots in caller frame.
OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
aligned_stack_mask.Remove(in);
in = OptoReg::add(in, -1);
}
aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
*idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
} else {
*idealreg2spillmask[Op_VecX] = RegMask::Empty;
}
if (Matcher::vector_size_supported(T_FLOAT,8)) {
// For VecY we need octo alignment and 32 bytes (8 slots) for spills.
OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
aligned_stack_mask.Remove(in);
in = OptoReg::add(in, -1);
}
aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
*idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
} else {
*idealreg2spillmask[Op_VecY] = RegMask::Empty;
}
if (Matcher::vector_size_supported(T_FLOAT,16)) {
// For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
aligned_stack_mask.Remove(in);
in = OptoReg::add(in, -1);
}
aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
*idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
} else {
*idealreg2spillmask[Op_VecZ] = RegMask::Empty;
}
if (Matcher::supports_scalable_vector()) {
int k = 1;
OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
if (Matcher::has_predicated_vectors()) {
// Exclude last input arg stack slots to avoid spilling vector register there,
// otherwise RegVectMask spills could stomp over stack slots in caller frame.
for (; (in >= init_in) && (k < scalable_predicate_reg_slots()); k++) {
scalable_stack_mask.Remove(in);
in = OptoReg::add(in, -1);
}
// For RegVectMask
scalable_stack_mask.clear_to_sets(scalable_predicate_reg_slots());
assert(scalable_stack_mask.is_AllStack(), "should be infinite stack");
*idealreg2spillmask[Op_RegVectMask] = *idealreg2regmask[Op_RegVectMask];
idealreg2spillmask[Op_RegVectMask]->OR(scalable_stack_mask);
}
// Exclude last input arg stack slots to avoid spilling vector register there,
// otherwise vector spills could stomp over stack slots in caller frame.
for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) {
scalable_stack_mask.Remove(in);
in = OptoReg::add(in, -1);
}
// For VecA
scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA);
assert(scalable_stack_mask.is_AllStack(), "should be infinite stack");
*idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA];
idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask);
} else {
*idealreg2spillmask[Op_VecA] = RegMask::Empty;
}
if (UseFPUForSpilling) {
// This mask logic assumes that the spill operations are
// symmetric and that the registers involved are the same size.
// On sparc for instance we may have to use 64 bit moves will
// kill 2 registers when used with F0-F31.
idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
#ifdef _LP64
idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
#else
idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
#ifdef ARM
// ARM has support for moving 64bit values between a pair of
// integer registers and a double register
idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
#endif
#endif
}
// Make up debug masks. Any spill slot plus callee-save (SOE) registers.
// Caller-save (SOC, AS) registers are assumed to be trashable by the various
// inline-cache fixup routines.
*idealreg2debugmask [Op_RegN] = *idealreg2spillmask[Op_RegN];
*idealreg2debugmask [Op_RegI] = *idealreg2spillmask[Op_RegI];
*idealreg2debugmask [Op_RegL] = *idealreg2spillmask[Op_RegL];
*idealreg2debugmask [Op_RegF] = *idealreg2spillmask[Op_RegF];
*idealreg2debugmask [Op_RegD] = *idealreg2spillmask[Op_RegD];
*idealreg2debugmask [Op_RegP] = *idealreg2spillmask[Op_RegP];
*idealreg2debugmask [Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask];
*idealreg2debugmask [Op_VecA] = *idealreg2spillmask[Op_VecA];
*idealreg2debugmask [Op_VecS] = *idealreg2spillmask[Op_VecS];
*idealreg2debugmask [Op_VecD] = *idealreg2spillmask[Op_VecD];
*idealreg2debugmask [Op_VecX] = *idealreg2spillmask[Op_VecX];
*idealreg2debugmask [Op_VecY] = *idealreg2spillmask[Op_VecY];
*idealreg2debugmask [Op_VecZ] = *idealreg2spillmask[Op_VecZ];
*idealreg2mhdebugmask[Op_RegN] = *idealreg2spillmask[Op_RegN];
*idealreg2mhdebugmask[Op_RegI] = *idealreg2spillmask[Op_RegI];
*idealreg2mhdebugmask[Op_RegL] = *idealreg2spillmask[Op_RegL];
*idealreg2mhdebugmask[Op_RegF] = *idealreg2spillmask[Op_RegF];
*idealreg2mhdebugmask[Op_RegD] = *idealreg2spillmask[Op_RegD];
*idealreg2mhdebugmask[Op_RegP] = *idealreg2spillmask[Op_RegP];
*idealreg2mhdebugmask[Op_RegVectMask] = *idealreg2spillmask[Op_RegVectMask];
*idealreg2mhdebugmask[Op_VecA] = *idealreg2spillmask[Op_VecA];
*idealreg2mhdebugmask[Op_VecS] = *idealreg2spillmask[Op_VecS];
*idealreg2mhdebugmask[Op_VecD] = *idealreg2spillmask[Op_VecD];
*idealreg2mhdebugmask[Op_VecX] = *idealreg2spillmask[Op_VecX];
*idealreg2mhdebugmask[Op_VecY] = *idealreg2spillmask[Op_VecY];
*idealreg2mhdebugmask[Op_VecZ] = *idealreg2spillmask[Op_VecZ];
// Prevent stub compilations from attempting to reference
// callee-saved (SOE) registers from debug info
bool exclude_soe = !Compile::current()->is_method_compilation();
RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask;
RegMask* mh_caller_save_mask = exclude_soe ? &mh_caller_save_regmask_exclude_soe : &mh_caller_save_regmask;
idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_RegVectMask]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask);
idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask);
idealreg2mhdebugmask[Op_RegN]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_RegI]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_RegL]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_RegF]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_RegD]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_RegP]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_RegVectMask]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_VecA]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_VecS]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_VecD]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_VecX]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_VecY]->SUBTRACT(*mh_caller_save_mask);
idealreg2mhdebugmask[Op_VecZ]->SUBTRACT(*mh_caller_save_mask);
}
//---------------------------is_save_on_entry----------------------------------
bool Matcher::is_save_on_entry(int reg) {
return
_register_save_policy[reg] == 'E' ||
_register_save_policy[reg] == 'A'; // Save-on-entry register?
}
//---------------------------Fixup_Save_On_Entry-------------------------------
void Matcher::Fixup_Save_On_Entry( ) {
init_first_stack_mask();
Node *root = C->root(); // Short name for root
// Count number of save-on-entry registers.
uint soe_cnt = number_of_saved_registers();
uint i;
// Find the procedure Start Node
StartNode *start = C->start();
assert( start, "Expect a start node" );
// Input RegMask array shared by all Returns.
// The type for doubles and longs has a count of 2, but
// there is only 1 returned value
uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
// Returns have 0 or 1 returned values depending on call signature.
// Return register is specified by return_value in the AD file.
if (ret_edge_cnt > TypeFunc::Parms)
ret_rms[TypeFunc::Parms+0] = _return_value_mask;
// Input RegMask array shared by all Rethrows.
uint reth_edge_cnt = TypeFunc::Parms+1;
RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
// Rethrow takes exception oop only, but in the argument 0 slot.
OptoReg::Name reg = find_receiver();
if (reg >= 0) {
reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
#ifdef _LP64
// Need two slots for ptrs in 64-bit land
reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
#endif
}
// Input RegMask array shared by all TailCalls
uint tail_call_edge_cnt = TypeFunc::Parms+2;
RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
// Input RegMask array shared by all TailJumps
uint tail_jump_edge_cnt = TypeFunc::Parms+2;
RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
// TailCalls have 2 returned values (target & moop), whose masks come
// from the usual MachNode/MachOper mechanism. Find a sample
// TailCall to extract these masks and put the correct masks into
// the tail_call_rms array.
for( i=1; i < root->req(); i++ ) {
MachReturnNode *m = root->in(i)->as_MachReturn();
if( m->ideal_Opcode() == Op_TailCall ) {
tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
break;
}
}
// TailJumps have 2 returned values (target & ex_oop), whose masks come
// from the usual MachNode/MachOper mechanism. Find a sample
// TailJump to extract these masks and put the correct masks into
// the tail_jump_rms array.
for( i=1; i < root->req(); i++ ) {
MachReturnNode *m = root->in(i)->as_MachReturn();
if( m->ideal_Opcode() == Op_TailJump ) {
tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
break;
}
}
// Input RegMask array shared by all Halts
uint halt_edge_cnt = TypeFunc::Parms;
RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
// Capture the return input masks into each exit flavor
for( i=1; i < root->req(); i++ ) {
MachReturnNode *exit = root->in(i)->as_MachReturn();
switch( exit->ideal_Opcode() ) {
case Op_Return : exit->_in_rms = ret_rms; break;
case Op_Rethrow : exit->_in_rms = reth_rms; break;
case Op_TailCall : exit->_in_rms = tail_call_rms; break;
case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
case Op_Halt : exit->_in_rms = halt_rms; break;
default : ShouldNotReachHere();
}
}
// Next unused projection number from Start.
int proj_cnt = C->tf()->domain()->cnt();
// Do all the save-on-entry registers. Make projections from Start for
// them, and give them a use at the exit points. To the allocator, they
// look like incoming register arguments.
for( i = 0; i < _last_Mach_Reg; i++ ) {
if( is_save_on_entry(i) ) {
// Add the save-on-entry to the mask array
ret_rms [ ret_edge_cnt] = mreg2regmask[i];
reth_rms [ reth_edge_cnt] = mreg2regmask[i];
tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
// Halts need the SOE registers, but only in the stack as debug info.
// A just-prior uncommon-trap or deoptimization will use the SOE regs.
halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
Node *mproj;
// Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
// into a single RegD.
if( (i&1) == 0 &&
_register_save_type[i ] == Op_RegF &&
_register_save_type[i+1] == Op_RegF &&
is_save_on_entry(i+1) ) {
// Add other bit for double
ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
proj_cnt += 2; // Skip 2 for doubles
}
else if( (i&1) == 1 && // Else check for high half of double
_register_save_type[i-1] == Op_RegF &&
_register_save_type[i ] == Op_RegF &&
is_save_on_entry(i-1) ) {
ret_rms [ ret_edge_cnt] = RegMask::Empty;
reth_rms [ reth_edge_cnt] = RegMask::Empty;
tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
halt_rms [ halt_edge_cnt] = RegMask::Empty;
mproj = C->top();
}
// Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
// into a single RegL.
else if( (i&1) == 0 &&
_register_save_type[i ] == Op_RegI &&
_register_save_type[i+1] == Op_RegI &&
is_save_on_entry(i+1) ) {
// Add other bit for long
ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
proj_cnt += 2; // Skip 2 for longs
}
else if( (i&1) == 1 && // Else check for high half of long
_register_save_type[i-1] == Op_RegI &&
_register_save_type[i ] == Op_RegI &&
is_save_on_entry(i-1) ) {
ret_rms [ ret_edge_cnt] = RegMask::Empty;
reth_rms [ reth_edge_cnt] = RegMask::Empty;
tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
halt_rms [ halt_edge_cnt] = RegMask::Empty;
mproj = C->top();
} else {
// Make a projection for it off the Start
mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
}
ret_edge_cnt ++;
reth_edge_cnt ++;
tail_call_edge_cnt ++;
tail_jump_edge_cnt ++;
halt_edge_cnt ++;
// Add a use of the SOE register to all exit paths
for( uint j=1; j < root->req(); j++ )
root->in(j)->add_req(mproj);
} // End of if a save-on-entry register
} // End of for all machine registers
}
//------------------------------init_spill_mask--------------------------------
void Matcher::init_spill_mask( Node *ret ) {
if( idealreg2regmask[Op_RegI] ) return; // One time only init
OptoReg::c_frame_pointer = c_frame_pointer();
c_frame_ptr_mask = c_frame_pointer();
#ifdef _LP64
// pointers are twice as big
c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
#endif
// Start at OptoReg::stack0()
STACK_ONLY_mask.Clear();
OptoReg::Name init = OptoReg::stack2reg(0);
// STACK_ONLY_mask is all stack bits
OptoReg::Name i;
for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
STACK_ONLY_mask.Insert(i);
// Also set the "infinite stack" bit.
STACK_ONLY_mask.set_AllStack();
for (i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i, 1)) {
// Copy the register names over into the shared world.
// SharedInfo::regName[i] = regName[i];
// Handy RegMasks per machine register
mreg2regmask[i].Insert(i);
// Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks.
if (_register_save_policy[i] == 'C' ||
_register_save_policy[i] == 'A') {
caller_save_regmask.Insert(i);
mh_caller_save_regmask.Insert(i);
}
// Exclude save-on-entry registers from debug masks for stub compilations.
if (_register_save_policy[i] == 'C' ||
_register_save_policy[i] == 'A' ||
_register_save_policy[i] == 'E') {
caller_save_regmask_exclude_soe.Insert(i);
mh_caller_save_regmask_exclude_soe.Insert(i);
}
}
// Also exclude the register we use to save the SP for MethodHandle
// invokes to from the corresponding MH debug masks
const RegMask sp_save_mask = method_handle_invoke_SP_save_mask();
mh_caller_save_regmask.OR(sp_save_mask);
mh_caller_save_regmask_exclude_soe.OR(sp_save_mask);
// Grab the Frame Pointer
Node *fp = ret->in(TypeFunc::FramePtr);
// Share frame pointer while making spill ops
set_shared(fp);
// Get the ADLC notion of the right regmask, for each basic type.
#ifdef _LP64
idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret);
#endif
idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret);
idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret);
idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret);
idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret);
idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret);
idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret);
idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret);
idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret);
idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret);
idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret);
idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret);
idealreg2regmask[Op_RegVectMask] = regmask_for_ideal_register(Op_RegVectMask, ret);
}
#ifdef ASSERT
static void match_alias_type(Compile* C, Node* n, Node* m) {
if (!VerifyAliases) return; // do not go looking for trouble by default
const TypePtr* nat = n->adr_type();
const TypePtr* mat = m->adr_type();
int nidx = C->get_alias_index(nat);
int midx = C->get_alias_index(mat);
// Detune the assert for cases like (AndI 0xFF (LoadB p)).
if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
for (uint i = 1; i < n->req(); i++) {
Node* n1 = n->in(i);
const TypePtr* n1at = n1->adr_type();
if (n1at != NULL) {
nat = n1at;
nidx = C->get_alias_index(n1at);
}
}
}
// %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
switch (n->Opcode()) {
case Op_PrefetchAllocation:
nidx = Compile::AliasIdxRaw;
nat = TypeRawPtr::BOTTOM;
break;
}
}
if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
switch (n->Opcode()) {
case Op_ClearArray:
midx = Compile::AliasIdxRaw;
mat = TypeRawPtr::BOTTOM;
break;
}
}
if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
switch (n->Opcode()) {
case Op_Return:
case Op_Rethrow:
case Op_Halt:
case Op_TailCall:
case Op_TailJump:
nidx = Compile::AliasIdxBot;
nat = TypePtr::BOTTOM;
break;
}
}
if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
switch (n->Opcode()) {
case Op_StrComp:
case Op_StrEquals:
case Op_StrIndexOf:
case Op_StrIndexOfChar:
case Op_AryEq:
case Op_CountPositives:
case Op_MemBarVolatile:
case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
case Op_StrInflatedCopy:
case Op_StrCompressedCopy:
case Op_OnSpinWait:
case Op_EncodeISOArray:
nidx = Compile::AliasIdxTop;
nat = NULL;
break;
}
}
if (nidx != midx) {
if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
n->dump();
m->dump();
}
assert(C->subsume_loads() && C->must_alias(nat, midx),
"must not lose alias info when matching");
}
}
#endif
//------------------------------xform------------------------------------------
// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
// Node in new-space. Given a new-space Node, recursively walk his children.
Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
Node *Matcher::xform( Node *n, int max_stack ) {
// Use one stack to keep both: child's node/state and parent's node/index
MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
while (mstack.is_nonempty()) {
C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
if (C->failing()) return NULL;
n = mstack.node(); // Leave node on stack
Node_State nstate = mstack.state();
if (nstate == Visit) {
mstack.set_state(Post_Visit);
Node *oldn = n;
// Old-space or new-space check
if (!C->node_arena()->contains(n)) {
// Old space!
Node* m;
if (has_new_node(n)) { // Not yet Label/Reduced
m = new_node(n);
} else {
if (!is_dontcare(n)) { // Matcher can match this guy
// Calls match special. They match alone with no children.
// Their children, the incoming arguments, match normally.
m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
if (C->failing()) return NULL;
if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
if (n->is_MemBar()) {
m->as_MachMemBar()->set_adr_type(n->adr_type());
}
} else { // Nothing the matcher cares about
if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) { // Projections?
// Convert to machine-dependent projection
m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
NOT_PRODUCT(record_new2old(m, n);)
if (m->in(0) != NULL) // m might be top
collect_null_checks(m, n);
} else { // Else just a regular 'ol guy
m = n->clone(); // So just clone into new-space
NOT_PRODUCT(record_new2old(m, n);)
// Def-Use edges will be added incrementally as Uses
// of this node are matched.
assert(m->outcnt() == 0, "no Uses of this clone yet");
}
}
set_new_node(n, m); // Map old to new
if (_old_node_note_array != NULL) {
Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
n->_idx);
C->set_node_notes_at(m->_idx, nn);
}
debug_only(match_alias_type(C, n, m));
}
n = m; // n is now a new-space node
mstack.set_node(n);
}
// New space!
if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
int i;
// Put precedence edges on stack first (match them last).
for (i = oldn->req(); (uint)i < oldn->len(); i++) {
Node *m = oldn->in(i);
if (m == NULL) break;
// set -1 to call add_prec() instead of set_req() during Step1
mstack.push(m, Visit, n, -1);
}
// Handle precedence edges for interior nodes
for (i = n->len()-1; (uint)i >= n->req(); i--) {
Node *m = n->in(i);
if (m == NULL || C->node_arena()->contains(m)) continue;
n->rm_prec(i);
// set -1 to call add_prec() instead of set_req() during Step1
mstack.push(m, Visit, n, -1);
}
// For constant debug info, I'd rather have unmatched constants.
int cnt = n->req();
JVMState* jvms = n->jvms();
int debug_cnt = jvms ? jvms->debug_start() : cnt;
// Now do only debug info. Clone constants rather than matching.
// Constants are represented directly in the debug info without
// the need for executable machine instructions.
// Monitor boxes are also represented directly.
for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
Node *m = n->in(i); // Get input
int op = m->Opcode();
assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
op == Op_ConF || op == Op_ConD || op == Op_ConL
// || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
) {
m = m->clone();
NOT_PRODUCT(record_new2old(m, n));
mstack.push(m, Post_Visit, n, i); // Don't need to visit
mstack.push(m->in(0), Visit, m, 0);
} else {
mstack.push(m, Visit, n, i);
}
}
// And now walk his children, and convert his inputs to new-space.
for( ; i >= 0; --i ) { // For all normal inputs do
Node *m = n->in(i); // Get input
if(m != NULL)
mstack.push(m, Visit, n, i);
}
}
else if (nstate == Post_Visit) {
// Set xformed input
Node *p = mstack.parent();
if (p != NULL) { // root doesn't have parent
int i = (int)mstack.index();
if (i >= 0)
p->set_req(i, n); // required input
else if (i == -1)
p->add_prec(n); // precedence input
else
ShouldNotReachHere();
}
mstack.pop(); // remove processed node from stack
}
else {
ShouldNotReachHere();
}
} // while (mstack.is_nonempty())
return n; // Return new-space Node
}
//------------------------------warp_outgoing_stk_arg------------------------
OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
// Convert outgoing argument location to a pre-biased stack offset
if (reg->is_stack()) {
OptoReg::Name warped = reg->reg2stack();
// Adjust the stack slot offset to be the register number used
// by the allocator.
warped = OptoReg::add(begin_out_arg_area, warped);
// Keep track of the largest numbered stack slot used for an arg.
// Largest used slot per call-site indicates the amount of stack
// that is killed by the call.
if( warped >= out_arg_limit_per_call )
out_arg_limit_per_call = OptoReg::add(warped,1);
if (!RegMask::can_represent_arg(warped)) {
C->record_method_not_compilable("unsupported calling sequence");
return OptoReg::Bad;
}
return warped;
}
return OptoReg::as_OptoReg(reg);
}
//------------------------------match_sfpt-------------------------------------
// Helper function to match call instructions. Calls match special.
// They match alone with no children. Their children, the incoming
// arguments, match normally.
MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
MachSafePointNode *msfpt = NULL;
MachCallNode *mcall = NULL;
uint cnt;
// Split out case for SafePoint vs Call
CallNode *call;
const TypeTuple *domain;
ciMethod* method = NULL;
bool is_method_handle_invoke = false; // for special kill effects
if( sfpt->is_Call() ) {
call = sfpt->as_Call();
domain = call->tf()->domain();
cnt = domain->cnt();
// Match just the call, nothing else
MachNode *m = match_tree(call);
if (C->failing()) return NULL;
if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
// Copy data from the Ideal SafePoint to the machine version
mcall = m->as_MachCall();
mcall->set_tf( call->tf());
mcall->set_entry_point( call->entry_point());
mcall->set_cnt( call->cnt());
mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
if( mcall->is_MachCallJava() ) {
MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
const CallJavaNode *call_java = call->as_CallJava();
assert(call_java->validate_symbolic_info(), "inconsistent info");
method = call_java->method();
mcall_java->_method = method;
mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
is_method_handle_invoke = call_java->is_method_handle_invoke();
mcall_java->_method_handle_invoke = is_method_handle_invoke;
mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
mcall_java->_arg_escape = call_java->arg_escape();
if (is_method_handle_invoke) {
C->set_has_method_handle_invokes(true);
}
if( mcall_java->is_MachCallStaticJava() )
mcall_java->as_MachCallStaticJava()->_name =
call_java->as_CallStaticJava()->_name;
if( mcall_java->is_MachCallDynamicJava() )
mcall_java->as_MachCallDynamicJava()->_vtable_index =
call_java->as_CallDynamicJava()->_vtable_index;
}
else if( mcall->is_MachCallRuntime() ) {
MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime();
mach_call_rt->_name = call->as_CallRuntime()->_name;
mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP();
}
msfpt = mcall;
}
// This is a non-call safepoint
else {
call = NULL;
domain = NULL;
MachNode *mn = match_tree(sfpt);
if (C->failing()) return NULL;
msfpt = mn->as_MachSafePoint();
cnt = TypeFunc::Parms;
}
msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope();
// Advertise the correct memory effects (for anti-dependence computation).
msfpt->set_adr_type(sfpt->adr_type());
// Allocate a private array of RegMasks. These RegMasks are not shared.
msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
// Empty them all.
for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask();
// Do all the pre-defined non-Empty register masks
msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
// Place first outgoing argument can possibly be put.
OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
assert( is_even(begin_out_arg_area), "" );
// Compute max outgoing register number per call site.
OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
// Calls to C may hammer extra stack slots above and beyond any arguments.
// These are usually backing store for register arguments for varargs.
if( call != NULL && call->is_CallRuntime() )
out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
// Do the normal argument list (parameters) register masks
int argcnt = cnt - TypeFunc::Parms;
if( argcnt > 0 ) { // Skip it all if we have no args
BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
int i;
for( i = 0; i < argcnt; i++ ) {
sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
}
// V-call to pick proper calling convention
call->calling_convention( sig_bt, parm_regs, argcnt );
#ifdef ASSERT
// Sanity check users' calling convention. Really handy during
// the initial porting effort. Fairly expensive otherwise.
{ for (int i = 0; i<argcnt; i++) {
if( !parm_regs[i].first()->is_valid() &&
!parm_regs[i].second()->is_valid() ) continue;
VMReg reg1 = parm_regs[i].first();
VMReg reg2 = parm_regs[i].second();
for (int j = 0; j < i; j++) {
if( !parm_regs[j].first()->is_valid() &&
!parm_regs[j].second()->is_valid() ) continue;
VMReg reg3 = parm_regs[j].first();
VMReg reg4 = parm_regs[j].second();
if( !reg1->is_valid() ) {
assert( !reg2->is_valid(), "valid halvsies" );
} else if( !reg3->is_valid() ) {
assert( !reg4->is_valid(), "valid halvsies" );
} else {
assert( reg1 != reg2, "calling conv. must produce distinct regs");
assert( reg1 != reg3, "calling conv. must produce distinct regs");
assert( reg1 != reg4, "calling conv. must produce distinct regs");
assert( reg2 != reg3, "calling conv. must produce distinct regs");
assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
assert( reg3 != reg4, "calling conv. must produce distinct regs");
}
}
}
}
#endif
// Visit each argument. Compute its outgoing register mask.
// Return results now can have 2 bits returned.
// Compute max over all outgoing arguments both per call-site
// and over the entire method.
for( i = 0; i < argcnt; i++ ) {
// Address of incoming argument mask to fill in
RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
VMReg first = parm_regs[i].first();
VMReg second = parm_regs[i].second();
if(!first->is_valid() &&
!second->is_valid()) {
continue; // Avoid Halves
}
// Handle case where arguments are in vector registers.
if(call->in(TypeFunc::Parms + i)->bottom_type()->isa_vect()) {
OptoReg::Name reg_fst = OptoReg::as_OptoReg(first);
OptoReg::Name reg_snd = OptoReg::as_OptoReg(second);
assert (reg_fst <= reg_snd, "fst=%d snd=%d", reg_fst, reg_snd);
for (OptoReg::Name r = reg_fst; r <= reg_snd; r++) {
rm->Insert(r);
}
}
// Grab first register, adjust stack slots and insert in mask.
OptoReg::Name reg1 = warp_outgoing_stk_arg(first, begin_out_arg_area, out_arg_limit_per_call );
if (OptoReg::is_valid(reg1))
rm->Insert( reg1 );
// Grab second register (if any), adjust stack slots and insert in mask.
OptoReg::Name reg2 = warp_outgoing_stk_arg(second, begin_out_arg_area, out_arg_limit_per_call );
if (OptoReg::is_valid(reg2))
rm->Insert( reg2 );
} // End of for all arguments
}
// Compute the max stack slot killed by any call. These will not be
// available for debug info, and will be used to adjust FIRST_STACK_mask
// after all call sites have been visited.
if( _out_arg_limit < out_arg_limit_per_call)
_out_arg_limit = out_arg_limit_per_call;
if (mcall) {
// Kill the outgoing argument area, including any non-argument holes and
// any legacy C-killed slots. Use Fat-Projections to do the killing.
// Since the max-per-method covers the max-per-call-site and debug info
// is excluded on the max-per-method basis, debug info cannot land in
// this killed area.
uint r_cnt = mcall->tf()->range()->cnt();
MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
C->record_method_not_compilable("unsupported outgoing calling sequence");
} else {
for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
proj->_rout.Insert(OptoReg::Name(i));
}
if (proj->_rout.is_NotEmpty()) {
push_projection(proj);
}
}
// Transfer the safepoint information from the call to the mcall
// Move the JVMState list
msfpt->set_jvms(sfpt->jvms());
for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
jvms->set_map(sfpt);
}
// Debug inputs begin just after the last incoming parameter
assert((mcall == NULL) || (mcall->jvms() == NULL) ||
(mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
// Add additional edges.
if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
// For these calls we can not add MachConstantBase in expand(), as the
// ins are not complete then.
msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
if (msfpt->jvms() &&
msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
// We added an edge before jvms, so we must adapt the position of the ins.
msfpt->jvms()->adapt_position(+1);
}
}
// Registers killed by the call are set in the local scheduling pass
// of Global Code Motion.
return msfpt;
}
//---------------------------match_tree----------------------------------------
// Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
// of the whole-sale conversion from Ideal to Mach Nodes. Also used for
// making GotoNodes while building the CFG and in init_spill_mask() to identify
// a Load's result RegMask for memoization in idealreg2regmask[]
MachNode *Matcher::match_tree( const Node *n ) {
assert( n->Opcode() != Op_Phi, "cannot match" );
assert( !n->is_block_start(), "cannot match" );
// Set the mark for all locally allocated State objects.
// When this call returns, the _states_arena arena will be reset
// freeing all State objects.
ResourceMark rm( &_states_arena );
LabelRootDepth = 0;
// StoreNodes require their Memory input to match any LoadNodes
Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
#ifdef ASSERT
Node* save_mem_node = _mem_node;
_mem_node = n->is_Store() ? (Node*)n : NULL;
#endif
// State object for root node of match tree
// Allocate it on _states_arena - stack allocation can cause stack overflow.
State *s = new (&_states_arena) State;
s->_kids[0] = NULL;
s->_kids[1] = NULL;
s->_leaf = (Node*)n;
// Label the input tree, allocating labels from top-level arena
Node* root_mem = mem;
Label_Root(n, s, n->in(0), root_mem);
if (C->failing()) return NULL;
// The minimum cost match for the whole tree is found at the root State
uint mincost = max_juint;
uint cost = max_juint;
uint i;
for (i = 0; i < NUM_OPERANDS; i++) {
if (s->valid(i) && // valid entry and
s->cost(i) < cost && // low cost and
s->rule(i) >= NUM_OPERANDS) {// not an operand
mincost = i;
cost = s->cost(i);
}
}
if (mincost == max_juint) {
#ifndef PRODUCT
tty->print("No matching rule for:");
s->dump();
#endif
Matcher::soft_match_failure();
return NULL;
}
// Reduce input tree based upon the state labels to machine Nodes
MachNode *m = ReduceInst(s, s->rule(mincost), mem);
// New-to-old mapping is done in ReduceInst, to cover complex instructions.
NOT_PRODUCT(_old2new_map.map(n->_idx, m);)
// Add any Matcher-ignored edges
uint cnt = n->req();
uint start = 1;
if( mem != (Node*)1 ) start = MemNode::Memory+1;
if( n->is_AddP() ) {
assert( mem == (Node*)1, "" );
start = AddPNode::Base+1;
}
for( i = start; i < cnt; i++ ) {
if( !n->match_edge(i) ) {
if( i < m->req() )
m->ins_req( i, n->in(i) );
else
m->add_req( n->in(i) );
}
}
debug_only( _mem_node = save_mem_node; )
return m;
}
//------------------------------match_into_reg---------------------------------
// Choose to either match this Node in a register or part of the current
// match tree. Return true for requiring a register and false for matching
// as part of the current match tree.
static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
const Type *t = m->bottom_type();
if (t->singleton()) {
// Never force constants into registers. Allow them to match as
// constants or registers. Copies of the same value will share
// the same register. See find_shared_node.
return false;
} else { // Not a constant
// Stop recursion if they have different Controls.
Node* m_control = m->in(0);
// Control of load's memory can post-dominates load's control.
// So use it since load can't float above its memory.
Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
if (control && m_control && control != m_control && control != mem_control) {
// Actually, we can live with the most conservative control we
// find, if it post-dominates the others. This allows us to
// pick up load/op/store trees where the load can float a little
// above the store.
Node *x = control;
const uint max_scan = 6; // Arbitrary scan cutoff
uint j;
for (j=0; j<max_scan; j++) {
if (x->is_Region()) // Bail out at merge points
return true;
x = x->in(0);
if (x == m_control) // Does 'control' post-dominate
break; // m->in(0)? If so, we can use it
if (x == mem_control) // Does 'control' post-dominate
--> --------------------
--> maximum size reached
--> --------------------
¤ Diese beiden folgenden Angebotsgruppen bietet das Unternehmen0.54Angebot
Wie Sie bei der Firma Beratungs- und Dienstleistungen beauftragen können
¤
|
Lebenszyklus
Die hierunter aufgelisteten Ziele sind für diese Firma wichtig
Ziele
Entwicklung einer Software für die statische Quellcodeanalyse
|