Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: stackValue.cpp   Sprache: C

/*
 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */


#include "precompiled.hpp"
#include "code/debugInfo.hpp"
#include "oops/access.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/oop.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/globals.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/stackValue.hpp"
#if INCLUDE_ZGC
#include "gc/z/zBarrier.inline.hpp"
#endif
#if INCLUDE_SHENANDOAHGC
#include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
#endif

class RegisterMap;
class SmallRegisterMap;

template StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
template StackValue* StackValue::create_stack_value(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);

template<typename RegisterMapT>
StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
  return create_stack_value(sv, stack_value_address(fr, reg_map, sv), reg_map);
}

static oop oop_from_oop_location(stackChunkOop chunk, void* addr) {
  if (addr == nullptr) {
    return nullptr;
  }

  if (UseCompressedOops) {
    // When compressed oops is enabled, an oop location may
    // contain narrow oop values - we deal with that here

    if (chunk != NULL && chunk->has_bitmap()) {
      // Transformed stack chunk with narrow oops
      return chunk->load_oop((narrowOop*)addr);
    }

#ifdef _LP64
    if (CompressedOops::is_base(*(void**)addr)) {
      // Compiled code may produce decoded oop = narrow_oop_base
      // when a narrow oop implicit null check is used.
      // The narrow_oop_base could be NULL or be the address
      // of the page below heap. Use NULL value for both cases.
      return nullptr;
    }
#endif
  }

  if (chunk != NULL) {
    // Load oop from chunk
    return chunk->load_oop((oop*)addr);
  }

  // Load oop from stack
  return *(oop*)addr;
}

static oop oop_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) {
  assert(UseCompressedOops, "Narrow oops should not exist");
  assert(addr != nullptr, "Not expecting null address");
  narrowOop* narrow_addr;
  if (is_register) {
    // The callee has no clue whether the register holds an int,
    // long or is unused.  He always saves a long.  Here we know
    // a long was saved, but we only want an int back.  Narrow the
    // saved long to the int that the JVM wants.  We can't just
    // use narrow_oop_cast directly, because we don't know what
    // the high bits of the value might be.
    narrow_addr = ((narrowOop*)addr) BIG_ENDIAN_ONLY(+ 1);
  } else {
    narrow_addr = (narrowOop*)addr;
  }

  if (chunk != NULL) {
    // Load oop from chunk
    return chunk->load_oop(narrow_addr);
  }

  // Load oop from stack
  return CompressedOops::decode(*narrow_addr);
}

StackValue* StackValue::create_stack_value_from_oop_location(stackChunkOop chunk, void* addr) {
  oop val = oop_from_oop_location(chunk, addr);
  assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
         p2i(addr), chunk != NULL, chunk != NULL && chunk->has_bitmap() && UseCompressedOops);
  Handle h(Thread::current(), val); // Wrap a handle around the oop
  return new StackValue(h);
}

StackValue* StackValue::create_stack_value_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) {
  oop val = oop_from_narrowOop_location(chunk, addr, is_register);
  assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
         p2i(addr), chunk != NULL, chunk != NULL && chunk->has_bitmap() && UseCompressedOops);
  Handle h(Thread::current(), val); // Wrap a handle around the oop
  return new StackValue(h);
}

template<typename RegisterMapT>
StackValue* StackValue::create_stack_value(ScopeValue* sv, address value_addr, const RegisterMapT* reg_map) {
  stackChunkOop chunk = reg_map->stack_chunk()();
  if (sv->is_location()) {
    // Stack or register value
    Location loc = ((LocationValue *)sv)->location();

    // Then package it right depending on type
    // Note: the transfer of the data is thru a union that contains
    // an intptr_t. This is because an interpreter stack slot is
    // really an intptr_t. The use of a union containing an intptr_t
    // ensures that on a 64 bit platform we have proper alignment
    // and that we store the value where the interpreter will expect
    // to find it (i.e. proper endian). Similarly on a 32bit platform
    // using the intptr_t ensures that when a value is larger than
    // a stack slot (jlong/jdouble) that we capture the proper part
    // of the value for the stack slot in question.
    //
    switch( loc.type() ) {
    case Location::float_in_dbl: { // Holds a float in a double register?
      // The callee has no clue whether the register holds a float,
      // double or is unused.  He always saves a double.  Here we know
      // a double was saved, but we only want a float back.  Narrow the
      // saved double to the float that the JVM wants.
      assert( loc.is_register(), "floats always saved to stack in 1 word" );
      union { intptr_t p; jfloat jf; } value;
      value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
      value.jf = (jfloat) *(jdouble*) value_addr;
      return new StackValue(value.p); // 64-bit high half is stack junk
    }
    case Location::int_in_long: { // Holds an int in a long register?
      // The callee has no clue whether the register holds an int,
      // long or is unused.  He always saves a long.  Here we know
      // a long was saved, but we only want an int back.  Narrow the
      // saved long to the int that the JVM wants.
      assert( loc.is_register(), "ints always saved to stack in 1 word" );
      union { intptr_t p; jint ji;} value;
      value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
      value.ji = (jint) *(jlong*) value_addr;
      return new StackValue(value.p); // 64-bit high half is stack junk
    }
#ifdef _LP64
    case Location::dbl:
      // Double value in an aligned adjacent pair
      return new StackValue(*(intptr_t*)value_addr);
    case Location::lng:
      // Long   value in an aligned adjacent pair
      return new StackValue(*(intptr_t*)value_addr);
    case Location::narrowoop:
      return create_stack_value_from_narrowOop_location(reg_map->stack_chunk()(), (void*)value_addr, loc.is_register());
#endif
    case Location::oop:
      return create_stack_value_from_oop_location(reg_map->stack_chunk()(), (void*)value_addr);
    case Location::addr: {
      loc.print_on(tty);
      ShouldNotReachHere(); // both C1 and C2 now inline jsrs
    }
    case Location::normal: {
      // Just copy all other bits straight through
      union { intptr_t p; jint ji;} value;
      value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
      value.ji = *(jint*)value_addr;
      return new StackValue(value.p);
    }
    case Location::invalid: {
      return new StackValue();
    }
    case Location::vector: {
      loc.print_on(tty);
      ShouldNotReachHere(); // should be handled by VectorSupport::allocate_vector()
    }
    default:
      loc.print_on(tty);
      ShouldNotReachHere();
    }

  } else if (sv->is_constant_int()) {
    // Constant int: treat same as register int.
    union { intptr_t p; jint ji;} value;
    value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
    value.ji = (jint)((ConstantIntValue*)sv)->value();
    return new StackValue(value.p);
  } else if (sv->is_constant_oop()) {
    // constant oop
    return new StackValue(sv->as_ConstantOopReadValue()->value());
#ifdef _LP64
  } else if (sv->is_constant_double()) {
    // Constant double in a single stack slot
    union { intptr_t p; double d; } value;
    value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
    value.d = ((ConstantDoubleValue *)sv)->value();
    return new StackValue(value.p);
  } else if (sv->is_constant_long()) {
    // Constant long in a single stack slot
    union { intptr_t p; jlong jl; } value;
    value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
    value.jl = ((ConstantLongValue *)sv)->value();
    return new StackValue(value.p);
#endif
  } else if (sv->is_object()) { // Scalar replaced object in compiled frame
    Handle ov = ((ObjectValue *)sv)->value();
    return new StackValue(ov, (ov.is_null()) ? 1 : 0);
  } else if (sv->is_marker()) {
    // Should never need to directly construct a marker.
    ShouldNotReachHere();
  }
  // Unknown ScopeValue type
  ShouldNotReachHere();
  return new StackValue((intptr_t) 0);   // dummy
}

template address StackValue::stack_value_address(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
template address StackValue::stack_value_address(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);

template<typename RegisterMapT>
address StackValue::stack_value_address(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
  if (!sv->is_location()) {
    return NULL;
  }
  Location loc = ((LocationValue *)sv)->location();
  if (loc.type() == Location::invalid) {
    return NULL;
  }

  if (!reg_map->in_cont()) {
    address value_addr = loc.is_register()
      // Value was in a callee-save register
      ? reg_map->location(VMRegImpl::as_VMReg(loc.register_number()), fr->sp())
      // Else value was directly saved on the stack. The frame's original stack pointer,
      // before any extension by its callee (due to Compiler1 linkage on SPARC), must be used.
      : ((address)fr->unextended_sp()) + loc.stack_offset();

    assert(value_addr == NULL || reg_map->thread() == NULL || reg_map->thread()->is_in_usable_stack(value_addr), INTPTR_FORMAT, p2i(value_addr));
    return value_addr;
  }

  address value_addr = loc.is_register()
    ? reg_map->as_RegisterMap()->stack_chunk()->reg_to_location(*fr, reg_map->as_RegisterMap(), VMRegImpl::as_VMReg(loc.register_number()))
    : reg_map->as_RegisterMap()->stack_chunk()->usp_offset_to_location(*fr, loc.stack_offset());

  assert(value_addr == NULL || Continuation::is_in_usable_stack(value_addr, reg_map->as_RegisterMap()) || (reg_map->thread() != NULL && reg_map->thread()->is_in_usable_stack(value_addr)), INTPTR_FORMAT, p2i(value_addr));
  return value_addr;
}

BasicLock* StackValue::resolve_monitor_lock(const frame* fr, Location location) {
  assert(location.is_stack(), "for now we only look at the stack");
  int word_offset = location.stack_offset() / wordSize;
  // (stack picture)
  // high: [     ]  word_offset + 1
  // low   [     ]  word_offset
  //
  // sp->  [     ]  0
  // the word_offset is the distance from the stack pointer to the lowest address
  // The frame's original stack pointer, before any extension by its callee
  // (due to Compiler1 linkage on SPARC), must be used.
  return (BasicLock*) (fr->unextended_sp() + word_offset);
}


#ifndef PRODUCT

void StackValue::print_on(outputStream* st) const {
  switch(_type) {
    case T_INT:
      st->print("%d (int) %f (float) %x (hex)",  *(int *)&_integer_value, *(float *)&_integer_value,  *(int *)&_integer_value);
      break;

    case T_OBJECT:
      if (_handle_value() != NULL) {
        _handle_value()->print_value_on(st);
      } else {
        st->print("NULL");
      }
      st->print(" <" INTPTR_FORMAT ">", p2i(_handle_value()));
      break;

    case T_CONFLICT:
     st->print("conflict");
     break;

    default:
     ShouldNotReachHere();
  }
}

#endif

¤ Dauer der Verarbeitung: 0.0 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff



                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....
    

Besucherstatistik

Besucherstatistik