/*
* Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "code/debugInfo.hpp"
#include "oops/access.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/oop.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/globals.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/stackValue.hpp"
#if INCLUDE_ZGC
#include "gc/z/zBarrier.inline.hpp"
#endif
#if INCLUDE_SHENANDOAHGC
#include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
#endif
class RegisterMap;
class SmallRegisterMap;
template StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
template StackValue* StackValue::create_stack_value(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
template<typename RegisterMapT>
StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
return create_stack_value(sv, stack_value_address(fr, reg_map, sv), reg_map);
}
static oop oop_from_oop_location(stackChunkOop chunk, void* addr) {
if (addr == nullptr) {
return nullptr;
}
if (UseCompressedOops) {
// When compressed oops is enabled, an oop location may
// contain narrow oop values - we deal with that here
if (chunk != NULL && chunk->has_bitmap()) {
// Transformed stack chunk with narrow oops
return chunk->load_oop((narrowOop*)addr);
}
#ifdef _LP64
if (CompressedOops::is_base(*(void**)addr)) {
// Compiled code may produce decoded oop = narrow_oop_base
// when a narrow oop implicit null check is used.
// The narrow_oop_base could be NULL or be the address
// of the page below heap. Use NULL value for both cases.
return nullptr;
}
#endif
}
if (chunk != NULL) {
// Load oop from chunk
return chunk->load_oop((oop*)addr);
}
// Load oop from stack
return *(oop*)addr;
}
static oop oop_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) {
assert(UseCompressedOops, "Narrow oops should not exist");
assert(addr != nullptr, "Not expecting null address");
narrowOop* narrow_addr;
if (is_register) {
// The callee has no clue whether the register holds an int,
// long or is unused. He always saves a long. Here we know
// a long was saved, but we only want an int back. Narrow the
// saved long to the int that the JVM wants. We can't just
// use narrow_oop_cast directly, because we don't know what
// the high bits of the value might be.
narrow_addr = ((narrowOop*)addr) BIG_ENDIAN_ONLY(+ 1);
} else {
narrow_addr = (narrowOop*)addr;
}
if (chunk != NULL) {
// Load oop from chunk
return chunk->load_oop(narrow_addr);
}
// Load oop from stack
return CompressedOops::decode(*narrow_addr);
}
StackValue* StackValue::create_stack_value_from_oop_location(stackChunkOop chunk, void* addr) {
oop val = oop_from_oop_location(chunk, addr);
assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
p2i(addr), chunk != NULL, chunk != NULL && chunk->has_bitmap() && UseCompressedOops);
Handle h(Thread::current(), val); // Wrap a handle around the oop
return new StackValue(h);
}
StackValue* StackValue::create_stack_value_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) {
oop val = oop_from_narrowOop_location(chunk, addr, is_register);
assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
p2i(addr), chunk != NULL, chunk != NULL && chunk->has_bitmap() && UseCompressedOops);
Handle h(Thread::current(), val); // Wrap a handle around the oop
return new StackValue(h);
}
template<typename RegisterMapT>
StackValue* StackValue::create_stack_value(ScopeValue* sv, address value_addr, const RegisterMapT* reg_map) {
stackChunkOop chunk = reg_map->stack_chunk()();
if (sv->is_location()) {
// Stack or register value
Location loc = ((LocationValue *)sv)->location();
// Then package it right depending on type
// Note: the transfer of the data is thru a union that contains
// an intptr_t. This is because an interpreter stack slot is
// really an intptr_t. The use of a union containing an intptr_t
// ensures that on a 64 bit platform we have proper alignment
// and that we store the value where the interpreter will expect
// to find it (i.e. proper endian). Similarly on a 32bit platform
// using the intptr_t ensures that when a value is larger than
// a stack slot (jlong/jdouble) that we capture the proper part
// of the value for the stack slot in question.
//
switch( loc.type() ) {
case Location::float_in_dbl: { // Holds a float in a double register?
// The callee has no clue whether the register holds a float,
// double or is unused. He always saves a double. Here we know
// a double was saved, but we only want a float back. Narrow the
// saved double to the float that the JVM wants.
assert( loc.is_register(), "floats always saved to stack in 1 word" );
union { intptr_t p; jfloat jf; } value;
value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
value.jf = (jfloat) *(jdouble*) value_addr;
return new StackValue(value.p); // 64-bit high half is stack junk
}
case Location::int_in_long: { // Holds an int in a long register?
// The callee has no clue whether the register holds an int,
// long or is unused. He always saves a long. Here we know
// a long was saved, but we only want an int back. Narrow the
// saved long to the int that the JVM wants.
assert( loc.is_register(), "ints always saved to stack in 1 word" );
union { intptr_t p; jint ji;} value;
value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
value.ji = (jint) *(jlong*) value_addr;
return new StackValue(value.p); // 64-bit high half is stack junk
}
#ifdef _LP64
case Location::dbl:
// Double value in an aligned adjacent pair
return new StackValue(*(intptr_t*)value_addr);
case Location::lng:
// Long value in an aligned adjacent pair
return new StackValue(*(intptr_t*)value_addr);
case Location::narrowoop:
return create_stack_value_from_narrowOop_location(reg_map->stack_chunk()(), (void*)value_addr, loc.is_register());
#endif
case Location::oop:
return create_stack_value_from_oop_location(reg_map->stack_chunk()(), (void*)value_addr);
case Location::addr: {
loc.print_on(tty);
ShouldNotReachHere(); // both C1 and C2 now inline jsrs
}
case Location::normal: {
// Just copy all other bits straight through
union { intptr_t p; jint ji;} value;
value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
value.ji = *(jint*)value_addr;
return new StackValue(value.p);
}
case Location::invalid: {
return new StackValue();
}
case Location::vector: {
loc.print_on(tty);
ShouldNotReachHere(); // should be handled by VectorSupport::allocate_vector()
}
default:
loc.print_on(tty);
ShouldNotReachHere();
}
} else if (sv->is_constant_int()) {
// Constant int: treat same as register int.
union { intptr_t p; jint ji;} value;
value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
value.ji = (jint)((ConstantIntValue*)sv)->value();
return new StackValue(value.p);
} else if (sv->is_constant_oop()) {
// constant oop
return new StackValue(sv->as_ConstantOopReadValue()->value());
#ifdef _LP64
} else if (sv->is_constant_double()) {
// Constant double in a single stack slot
union { intptr_t p; double d; } value;
value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
value.d = ((ConstantDoubleValue *)sv)->value();
return new StackValue(value.p);
} else if (sv->is_constant_long()) {
// Constant long in a single stack slot
union { intptr_t p; jlong jl; } value;
value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
value.jl = ((ConstantLongValue *)sv)->value();
return new StackValue(value.p);
#endif
} else if (sv->is_object()) { // Scalar replaced object in compiled frame
Handle ov = ((ObjectValue *)sv)->value();
return new StackValue(ov, (ov.is_null()) ? 1 : 0);
} else if (sv->is_marker()) {
// Should never need to directly construct a marker.
ShouldNotReachHere();
}
// Unknown ScopeValue type
ShouldNotReachHere();
return new StackValue((intptr_t) 0); // dummy
}
template address StackValue::stack_value_address(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
template address StackValue::stack_value_address(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
template<typename RegisterMapT>
address StackValue::stack_value_address(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
if (!sv->is_location()) {
return NULL;
}
Location loc = ((LocationValue *)sv)->location();
if (loc.type() == Location::invalid) {
return NULL;
}
if (!reg_map->in_cont()) {
address value_addr = loc.is_register()
// Value was in a callee-save register
? reg_map->location(VMRegImpl::as_VMReg(loc.register_number()), fr->sp())
// Else value was directly saved on the stack. The frame's original stack pointer,
// before any extension by its callee (due to Compiler1 linkage on SPARC), must be used.
: ((address)fr->unextended_sp()) + loc.stack_offset();
assert(value_addr == NULL || reg_map->thread() == NULL || reg_map->thread()->is_in_usable_stack(value_addr), INTPTR_FORMAT, p2i(value_addr));
return value_addr;
}
address value_addr = loc.is_register()
? reg_map->as_RegisterMap()->stack_chunk()->reg_to_location(*fr, reg_map->as_RegisterMap(), VMRegImpl::as_VMReg(loc.register_number()))
: reg_map->as_RegisterMap()->stack_chunk()->usp_offset_to_location(*fr, loc.stack_offset());
assert(value_addr == NULL || Continuation::is_in_usable_stack(value_addr, reg_map->as_RegisterMap()) || (reg_map->thread() != NULL && reg_map->thread()->is_in_usable_stack(value_addr)), INTPTR_FORMAT, p2i(value_addr));
return value_addr;
}
BasicLock* StackValue::resolve_monitor_lock(const frame* fr, Location location) {
assert(location.is_stack(), "for now we only look at the stack");
int word_offset = location.stack_offset() / wordSize;
// (stack picture)
// high: [ ] word_offset + 1
// low [ ] word_offset
//
// sp-> [ ] 0
// the word_offset is the distance from the stack pointer to the lowest address
// The frame's original stack pointer, before any extension by its callee
// (due to Compiler1 linkage on SPARC), must be used.
return (BasicLock*) (fr->unextended_sp() + word_offset);
}
#ifndef PRODUCT
void StackValue::print_on(outputStream* st) const {
switch(_type) {
case T_INT:
st->print("%d (int) %f (float) %x (hex)", *(int *)&_integer_value, *(float *)&_integer_value, *(int *)&_integer_value);
break;
case T_OBJECT:
if (_handle_value() != NULL) {
_handle_value()->print_value_on(st);
} else {
st->print("NULL");
}
st->print(" <" INTPTR_FORMAT ">", p2i(_handle_value()));
break;
case T_CONFLICT:
st->print("conflict");
break;
default:
ShouldNotReachHere();
}
}
#endif
¤ Dauer der Verarbeitung: 0.0 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|