Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: QueueT.vdmpp   Sprache: Isabelle

(*  Title:      HOL/Analysis/Lebesgue_Measure.thy
    Author:     Johannes Hölzl, TU München
    Author:     Robert Himmelmann, TU München
    Author:     Jeremy Avigad
    Author:     Luke Serafin
*)


section \<open>Lebesgue Measure\<close>

theory Lebesgue_Measure
imports
  Finite_Product_Measure
  Caratheodory
  Complete_Measure
  Summation_Tests
  Regularity
begin

lemma measure_eqI_lessThan:
  fixes M N :: "real measure"
  assumes sets: "sets M = sets borel" "sets N = sets borel"
  assumes fin: "\x. emeasure M {x <..} < \"
  assumes "\x. emeasure M {x <..} = emeasure N {x <..}"
  shows "M = N"
proof (rule measure_eqI_generator_eq_countable)
  let ?LT = "\a::real. {a <..}" let ?E = "range ?LT"
  show "Int_stable ?E"
    by (auto simp: Int_stable_def lessThan_Int_lessThan)

  show "?E \ Pow UNIV" "sets M = sigma_sets UNIV ?E" "sets N = sigma_sets UNIV ?E"
    unfolding sets borel_Ioi by auto

  show "?LT`Rats \ ?E" "(\i\Rats. ?LT i) = UNIV" "\a. a \ ?LT`Rats \ emeasure M a \ \"
    using fin by (auto intro: Rats_no_bot_less simp: less_top)
qed (auto intro: assms countable_rat)

subsection \<open>Measures defined by monotonous functions\<close>

text \<open>
  Every right-continuous and nondecreasing function gives rise to a measure on the reals:
\<close>

definition\<^marker>\<open>tag important\<close> interval_measure :: "(real \<Rightarrow> real) \<Rightarrow> real measure" where
  "interval_measure F =
     extend_measure UNIV {(a, b). a \<le> b} (\<lambda>(a, b). {a<..b}) (\<lambda>(a, b). ennreal (F b - F a))"

lemma\<^marker>\<open>tag important\<close> emeasure_interval_measure_Ioc:
  assumes "a \ b"
  assumes mono_F: "\x y. x \ y \ F x \ F y"
  assumes right_cont_F : "\a. continuous (at_right a) F"
  shows "emeasure (interval_measure F) {a<..b} = F b - F a"
proof (rule extend_measure_caratheodory_pair[OF interval_measure_def \<open>a \<le> b\<close>])
  show "semiring_of_sets UNIV {{a<..b} |a b :: real. a \ b}"
  proof (unfold_locales, safe)
    fix a b c d :: real assume *: "a \ b" "c \ d"
    then show "\C\{{a<..b} |a b. a \ b}. finite C \ disjoint C \ {a<..b} - {c<..d} = \C"
    proof cases
      let ?C = "{{a<..b}}"
      assume "b < c \ d \ a \ d \ c"
      with * have "?C \ {{a<..b} |a b. a \ b} \ finite ?C \ disjoint ?C \ {a<..b} - {c<..d} = \?C"
        by (auto simp add: disjoint_def)
      thus ?thesis ..
    next
      let ?C = "{{a<..c}, {d<..b}}"
      assume "\ (b < c \ d \ a \ d \ c)"
      with * have "?C \ {{a<..b} |a b. a \ b} \ finite ?C \ disjoint ?C \ {a<..b} - {c<..d} = \?C"
        by (auto simp add: disjoint_def Ioc_inj) (metis linear)+
      thus ?thesis ..
    qed
  qed (auto simp: Ioc_inj, metis linear)
next
  fix l r :: "nat \ real" and a b :: real
  assume l_r[simp]: "\n. l n \ r n" and "a \ b" and disj: "disjoint_family (\n. {l n<..r n})"
  assume lr_eq_ab: "(\i. {l i<..r i}) = {a<..b}"

  have [intro, simp]: "\a b. a \ b \ F a \ F b"
    by (auto intro!: l_r mono_F)

  { fix S :: "nat set" assume "finite S"
    moreover note \<open>a \<le> b\<close>
    moreover have "\i. i \ S \ {l i <.. r i} \ {a <.. b}"
      unfolding lr_eq_ab[symmetric] by auto
    ultimately have "(\i\S. F (r i) - F (l i)) \ F b - F a"
    proof (induction S arbitrary: a rule: finite_psubset_induct)
      case (psubset S)
      show ?case
      proof cases
        assume "\i\S. l i < r i"
        with \<open>finite S\<close> have "Min (l ` {i\<in>S. l i < r i}) \<in> l ` {i\<in>S. l i < r i}"
          by (intro Min_in) auto
        then obtain m where m: "m \ S" "l m < r m" "l m = Min (l ` {i\S. l i < r i})"
          by fastforce

        have "(\i\S. F (r i) - F (l i)) = (F (r m) - F (l m)) + (\i\S - {m}. F (r i) - F (l i))"
          using m psubset by (intro sum.remove) auto
        also have "(\i\S - {m}. F (r i) - F (l i)) \ F b - F (r m)"
        proof (intro psubset.IH)
          show "S - {m} \ S"
            using \<open>m\<in>S\<close> by auto
          show "r m \ b"
            using psubset.prems(2)[OF \<open>m\<in>S\<close>] \<open>l m < r m\<close> by auto
        next
          fix i assume "i \ S - {m}"
          then have i: "i \ S" "i \ m" by auto
          { assume i': "l i < r i" "l i < r m"
            with \<open>finite S\<close> i m have "l m \<le> l i"
              by auto
            with i' have "{l i <.. r i} \ {l m <.. r m} \ {}"
              by auto
            then have False
              using disjoint_family_onD[OF disj, of i m] i by auto }
          then have "l i \ r i \ r m \ l i"
            unfolding not_less[symmetric] using l_r[of i] by auto
          then show "{l i <.. r i} \ {r m <.. b}"
            using psubset.prems(2)[OF \<open>i\<in>S\<close>] by auto
        qed
        also have "F (r m) - F (l m) \ F (r m) - F a"
          using psubset.prems(2)[OF \<open>m \<in> S\<close>] \<open>l m < r m\<close>
          by (auto simp add: Ioc_subset_iff intro!: mono_F)
        finally show ?case
          by (auto intro: add_mono)
      qed (auto simp add: \<open>a \<le> b\<close> less_le)
    qed }
  note claim1 = this

  (* second key induction: a lower bound on the measures of any finite collection of Ai's
     that cover an interval {u..v} *)


  { fix S u v and l r :: "nat \ real"
    assume "finite S" "\i. i\S \ l i < r i" "{u..v} \ (\i\S. {l i<..< r i})"
    then have "F v - F u \ (\i\S. F (r i) - F (l i))"
    proof (induction arbitrary: v u rule: finite_psubset_induct)
      case (psubset S)
      show ?case
      proof cases
        assume "S = {}" then show ?case
          using psubset by (simp add: mono_F)
      next
        assume "S \ {}"
        then obtain j where "j \ S"
          by auto

        let ?R = "r j < u \ l j > v \ (\i\S-{j}. l i \ l j \ r j \ r i)"
        show ?case
        proof cases
          assume "?R"
          with \<open>j \<in> S\<close> psubset.prems have "{u..v} \<subseteq> (\<Union>i\<in>S-{j}. {l i<..< r i})"
            apply (auto simp: subset_eq Ball_def)
            apply (metis Diff_iff less_le_trans leD linear singletonD)
            apply (metis Diff_iff less_le_trans leD linear singletonD)
            apply (metis order_trans less_le_not_le linear)
            done
          with \<open>j \<in> S\<close> have "F v - F u \<le> (\<Sum>i\<in>S - {j}. F (r i) - F (l i))"
            by (intro psubset) auto
          also have "\ \ (\i\S. F (r i) - F (l i))"
            using psubset.prems
            by (intro sum_mono2 psubset) (auto intro: less_imp_le)
          finally show ?thesis .
        next
          assume "\ ?R"
          then have j: "u \ r j" "l j \ v" "\i. i \ S - {j} \ r i < r j \ l i > l j"
            by (auto simp: not_less)
          let ?S1 = "{i \ S. l i < l j}"
          let ?S2 = "{i \ S. r i > r j}"

          have "(\i\S. F (r i) - F (l i)) \ (\i\?S1 \ ?S2 \ {j}. F (r i) - F (l i))"
            using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j
            by (intro sum_mono2) (auto intro: less_imp_le)
          also have "(\i\?S1 \ ?S2 \ {j}. F (r i) - F (l i)) =
            (\<Sum>i\<in>?S1. F (r i) - F (l i)) + (\<Sum>i\<in>?S2 . F (r i) - F (l i)) + (F (r j) - F (l j))"
            using psubset(1) psubset.prems(1) j
            apply (subst sum.union_disjoint)
            apply simp_all
            apply (subst sum.union_disjoint)
            apply auto
            apply (metis less_le_not_le)
            done
          also (xtrans) have "(\i\?S1. F (r i) - F (l i)) \ F (l j) - F u"
            using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j
            apply (intro psubset.IH psubset)
            apply (auto simp: subset_eq Ball_def)
            apply (metis less_le_trans not_le)
            done
          also (xtrans) have "(\i\?S2. F (r i) - F (l i)) \ F v - F (r j)"
            using \<open>j \<in> S\<close> \<open>finite S\<close> psubset.prems j
            apply (intro psubset.IH psubset)
            apply (auto simp: subset_eq Ball_def)
            apply (metis le_less_trans not_le)
            done
          finally (xtrans) show ?case
            by (auto simp: add_mono)
        qed
      qed
    qed }
  note claim2 = this

  (* now prove the inequality going the other way *)
  have "ennreal (F b - F a) \ (\i. ennreal (F (r i) - F (l i)))"
  proof (rule ennreal_le_epsilon)
    fix epsilon :: real assume egt0: "epsilon > 0"
    have "\i. \d>0. F (r i + d) < F (r i) + epsilon / 2^(i+2)"
    proof
      fix i
      note right_cont_F [of "r i"]
      thus "\d>0. F (r i + d) < F (r i) + epsilon / 2^(i+2)"
        apply -
        apply (subst (asm) continuous_at_right_real_increasing)
        apply (rule mono_F, assumption)
        apply (drule_tac x = "epsilon / 2 ^ (i + 2)" in spec)
        apply (erule impE)
        using egt0 by (auto simp add: field_simps)
    qed
    then obtain delta where
        deltai_gt0: "\i. delta i > 0" and
        deltai_prop: "\i. F (r i + delta i) < F (r i) + epsilon / 2^(i+2)"
      by metis
    have "\a' > a. F a' - F a < epsilon / 2"
      apply (insert right_cont_F [of a])
      apply (subst (asm) continuous_at_right_real_increasing)
      using mono_F apply force
      apply (drule_tac x = "epsilon / 2" in spec)
      using egt0 unfolding mult.commute [of 2] by force
    then obtain a' where a'lea [arith]: "a' > a" and
      a_prop: "F a' - F a < epsilon / 2"
      by auto
    define S' where "S' = {i. l i < r i}"
    obtain S :: "nat set" where
      "S \ S'" and finS: "finite S" and
      Sprop: "{a'..b} \ (\i \ S. {l i<..
    proof (rule compactE_image)
      show "compact {a'..b}"
        by (rule compact_Icc)
      show "\i. i \ S' \ open ({l i<..
      have "{a'..b} \ {a <.. b}"
        by auto
      also have "{a <.. b} = (\i\S'. {l i<..r i})"
        unfolding lr_eq_ab[symmetric] by (fastforce simp add: S'_def intro: less_le_trans)
      also have "\ \ (\i \ S'. {l i<..
        apply (intro UN_mono)
        apply (auto simp: S'_def)
        apply (cut_tac i=i in deltai_gt0)
        apply simp
        done
      finally show "{a'..b} \ (\i \ S'. {l i<..
    qed
    with S'_def have Sprop2: "\i. i \ S \ l i < r i" by auto
    from finS have "\n. \i \ S. i \ n"
      by (subst finite_nat_set_iff_bounded_le [symmetric])
    then obtain n where Sbound [rule_format]: "\i \ S. i \ n" ..
    have "F b - F a' \ (\i\S. F (r i + delta i) - F (l i))"
      apply (rule claim2 [rule_format])
      using finS Sprop apply auto
      apply (frule Sprop2)
      apply (subgoal_tac "delta i > 0")
      apply arith
      by (rule deltai_gt0)
    also have "... \ (\i \ S. F(r i) - F(l i) + epsilon / 2^(i+2))"
      apply (rule sum_mono)
      apply simp
      apply (rule order_trans)
      apply (rule less_imp_le)
      apply (rule deltai_prop)
      by auto
    also have "... = (\i \ S. F(r i) - F(l i)) +
        (epsilon / 4) * (\<Sum>i \<in> S. (1 / 2)^i)" (is "_ = ?t + _")
      by (subst sum.distrib) (simp add: field_simps sum_distrib_left)
    also have "... \ ?t + (epsilon / 4) * (\ i < Suc n. (1 / 2)^i)"
      apply (rule add_left_mono)
      apply (rule mult_left_mono)
      apply (rule sum_mono2)
      using egt0 apply auto
      by (frule Sbound, auto)
    also have "... \ ?t + (epsilon / 2)"
      apply (rule add_left_mono)
      apply (subst geometric_sum)
      apply auto
      apply (rule mult_left_mono)
      using egt0 apply auto
      done
    finally have aux2: "F b - F a' \ (\i\S. F (r i) - F (l i)) + epsilon / 2"
      by simp

    have "F b - F a = (F b - F a') + (F a' - F a)"
      by auto
    also have "... \ (F b - F a') + epsilon / 2"
      using a_prop by (intro add_left_mono) simp
    also have "... \ (\i\S. F (r i) - F (l i)) + epsilon / 2 + epsilon / 2"
      apply (intro add_right_mono)
      apply (rule aux2)
      done
    also have "... = (\i\S. F (r i) - F (l i)) + epsilon"
      by auto
    also have "... \ (\i\n. F (r i) - F (l i)) + epsilon"
      using finS Sbound Sprop by (auto intro!: add_right_mono sum_mono2)
    finally have "ennreal (F b - F a) \ (\i\n. ennreal (F (r i) - F (l i))) + epsilon"
      using egt0 by (simp add: sum_nonneg flip: ennreal_plus)
    then show "ennreal (F b - F a) \ (\i. ennreal (F (r i) - F (l i))) + (epsilon :: real)"
      by (rule order_trans) (auto intro!: add_mono sum_le_suminf simp del: sum_ennreal)
  qed
  moreover have "(\i. ennreal (F (r i) - F (l i))) \ ennreal (F b - F a)"
    using \<open>a \<le> b\<close> by (auto intro!: suminf_le_const ennreal_le_iff[THEN iffD2] claim1)
  ultimately show "(\n. ennreal (F (r n) - F (l n))) = ennreal (F b - F a)"
    by (rule antisym[rotated])
qed (auto simp: Ioc_inj mono_F)

lemma measure_interval_measure_Ioc:
  assumes "a \ b" and "\x y. x \ y \ F x \ F y" and "\a. continuous (at_right a) F"
  shows "measure (interval_measure F) {a <.. b} = F b - F a"
  unfolding measure_def
  by (simp add: assms emeasure_interval_measure_Ioc)

lemma emeasure_interval_measure_Ioc_eq:
  "(\x y. x \ y \ F x \ F y) \ (\a. continuous (at_right a) F) \
    emeasure (interval_measure F) {a <.. b} = (if a \<le> b then F b - F a else 0)"
  using emeasure_interval_measure_Ioc[of a b F] by auto

lemma\<^marker>\<open>tag important\<close> sets_interval_measure [simp, measurable_cong]:
    "sets (interval_measure F) = sets borel"
  apply (simp add: sets_extend_measure interval_measure_def borel_sigma_sets_Ioc)
  apply (rule sigma_sets_eqI)
  apply auto
  apply (case_tac "a \ ba")
  apply (auto intro: sigma_sets.Empty)
  done

lemma space_interval_measure [simp]: "space (interval_measure F) = UNIV"
  by (simp add: interval_measure_def space_extend_measure)

lemma emeasure_interval_measure_Icc:
  assumes "a \ b"
  assumes mono_F: "\x y. x \ y \ F x \ F y"
  assumes cont_F : "continuous_on UNIV F"
  shows "emeasure (interval_measure F) {a .. b} = F b - F a"
proof (rule tendsto_unique)
  { fix a b :: real assume "a \ b" then have "emeasure (interval_measure F) {a <.. b} = F b - F a"
      using cont_F
      by (subst emeasure_interval_measure_Ioc)
         (auto intro: mono_F continuous_within_subset simp: continuous_on_eq_continuous_within) }
  note * = this

  let ?F = "interval_measure F"
  show "((\a. F b - F a) \ emeasure ?F {a..b}) (at_left a)"
  proof (rule tendsto_at_left_sequentially)
    show "a - 1 < a" by simp
    fix X assume "\n. X n < a" "incseq X" "X \ a"
    with \<open>a \<le> b\<close> have "(\<lambda>n. emeasure ?F {X n<..b}) \<longlonglongrightarrow> emeasure ?F (\<Inter>n. {X n <..b})"
      apply (intro Lim_emeasure_decseq)
      apply (auto simp: decseq_def incseq_def emeasure_interval_measure_Ioc *)
      apply force
      apply (subst (asm ) *)
      apply (auto intro: less_le_trans less_imp_le)
      done
    also have "(\n. {X n <..b}) = {a..b}"
      using \<open>\<And>n. X n < a\<close>
      apply auto
      apply (rule LIMSEQ_le_const2[OF \<open>X \<longlonglongrightarrow> a\<close>])
      apply (auto intro: less_imp_le)
      apply (auto intro: less_le_trans)
      done
    also have "(\n. emeasure ?F {X n<..b}) = (\n. F b - F (X n))"
      using \<open>\<And>n. X n < a\<close> \<open>a \<le> b\<close> by (subst *) (auto intro: less_imp_le less_le_trans)
    finally show "(\n. F b - F (X n)) \ emeasure ?F {a..b}" .
  qed
  show "((\a. ennreal (F b - F a)) \ F b - F a) (at_left a)"
    by (rule continuous_on_tendsto_compose[where g="\x. x" and s=UNIV])
       (auto simp: continuous_on_ennreal continuous_on_diff cont_F)
qed (rule trivial_limit_at_left_real)

lemma\<^marker>\<open>tag important\<close> sigma_finite_interval_measure:
  assumes mono_F: "\x y. x \ y \ F x \ F y"
  assumes right_cont_F : "\a. continuous (at_right a) F"
  shows "sigma_finite_measure (interval_measure F)"
  apply unfold_locales
  apply (intro exI[of _ "(\(a, b). {a <.. b}) ` (\ \ \)"])
  apply (auto intro!: Rats_no_top_le Rats_no_bot_less countable_rat simp: emeasure_interval_measure_Ioc_eq[OF assms])
  done

subsection \<open>Lebesgue-Borel measure\<close>

definition\<^marker>\<open>tag important\<close> lborel :: "('a :: euclidean_space) measure" where
  "lborel = distr (\\<^sub>M b\Basis. interval_measure (\x. x)) borel (\f. \b\Basis. f b *\<^sub>R b)"

abbreviation\<^marker>\<open>tag important\<close> lebesgue :: "'a::euclidean_space measure"
  where "lebesgue \ completion lborel"

abbreviation\<^marker>\<open>tag important\<close> lebesgue_on :: "'a set \<Rightarrow> 'a::euclidean_space measure"
  where "lebesgue_on \ \ restrict_space (completion lborel) \"

lemma lebesgue_on_mono:
  assumes major: "AE x in lebesgue_on S. P x" and minor: "\x.\P x; x \ S\ \ Q x"
  shows "AE x in lebesgue_on S. Q x"
proof -
  have "AE a in lebesgue_on S. P a \ Q a"
    using minor space_restrict_space by fastforce
  then show ?thesis
    using major by auto
qed

lemma integral_eq_zero_null_sets:
  assumes "S \ null_sets lebesgue"
  shows "integral\<^sup>L (lebesgue_on S) f = 0"
proof (rule integral_eq_zero_AE)
  show "AE x in lebesgue_on S. f x = 0"
    by (metis (no_types, lifting) assms AE_not_in lebesgue_on_mono null_setsD2 null_sets_restrict_space order_refl)
qed

lemma
  shows sets_lborel[simp, measurable_cong]: "sets lborel = sets borel"
    and space_lborel[simp]: "space lborel = space borel"
    and measurable_lborel1[simp]: "measurable M lborel = measurable M borel"
    and measurable_lborel2[simp]: "measurable lborel M = measurable borel M"
  by (simp_all add: lborel_def)

lemma space_lebesgue_on [simp]: "space (lebesgue_on S) = S"
  by (simp add: space_restrict_space)

lemma sets_lebesgue_on_refl [iff]: "S \ sets (lebesgue_on S)"
    by (metis inf_top.right_neutral sets.top space_borel space_completion space_lborel space_restrict_space)

lemma Compl_in_sets_lebesgue: "-A \ sets lebesgue \ A \ sets lebesgue"
  by (metis Compl_eq_Diff_UNIV double_compl space_borel space_completion space_lborel Sigma_Algebra.sets.compl_sets)

lemma measurable_lebesgue_cong:
  assumes "\x. x \ S \ f x = g x"
  shows "f \ measurable (lebesgue_on S) M \ g \ measurable (lebesgue_on S) M"
  by (metis (mono_tags, lifting) IntD1 assms measurable_cong_simp space_restrict_space)

lemma lebesgue_on_UNIV_eq: "lebesgue_on UNIV = lebesgue"
proof -
  have "measure_of UNIV (sets lebesgue) (emeasure lebesgue) = lebesgue"
    by (metis measure_of_of_measure space_borel space_completion space_lborel)
  then show ?thesis
    by (auto simp: restrict_space_def)
qed

lemma integral_restrict_Int:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  assumes "S \ sets lebesgue" "T \ sets lebesgue"
  shows "integral\<^sup>L (lebesgue_on T) (\x. if x \ S then f x else 0) = integral\<^sup>L (lebesgue_on (S \ T)) f"
proof -
  have "(\x. indicat_real T x *\<^sub>R (if x \ S then f x else 0)) = (\x. indicat_real (S \ T) x *\<^sub>R f x)"
    by (force simp: indicator_def)
  then show ?thesis
    by (simp add: assms sets.Int Bochner_Integration.integral_restrict_space)
qed

lemma integral_restrict:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  assumes "S \ T" "S \ sets lebesgue" "T \ sets lebesgue"
  shows "integral\<^sup>L (lebesgue_on T) (\x. if x \ S then f x else 0) = integral\<^sup>L (lebesgue_on S) f"
  using integral_restrict_Int [of S T f] assms
  by (simp add: Int_absorb2)

lemma integral_restrict_UNIV:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  assumes "S \ sets lebesgue"
  shows "integral\<^sup>L lebesgue (\x. if x \ S then f x else 0) = integral\<^sup>L (lebesgue_on S) f"
  using integral_restrict_Int [of S UNIV f] assms
  by (simp add: lebesgue_on_UNIV_eq)

lemma integrable_lebesgue_on_empty [iff]:
  fixes f :: "'a::euclidean_space \ 'b::{second_countable_topology,banach}"
  shows "integrable (lebesgue_on {}) f"
  by (simp add: integrable_restrict_space)

lemma integral_lebesgue_on_empty [simp]:
  fixes f :: "'a::euclidean_space \ 'b::{second_countable_topology,banach}"
  shows "integral\<^sup>L (lebesgue_on {}) f = 0"
  by (simp add: Bochner_Integration.integral_empty)
lemma has_bochner_integral_restrict_space:
  fixes f :: "'a \ 'b::{banach, second_countable_topology}"
  assumes \<Omega>: "\<Omega> \<inter> space M \<in> sets M"
  shows "has_bochner_integral (restrict_space M \) f i
     \<longleftrightarrow> has_bochner_integral M (\<lambda>x. indicator \<Omega> x *\<^sub>R f x) i"
  by (simp add: integrable_restrict_space [OF assms] integral_restrict_space [OF assms] has_bochner_integral_iff)

lemma integrable_restrict_UNIV:
  fixes f :: "'a::euclidean_space \ 'b::{banach, second_countable_topology}"
  assumes S: "S \ sets lebesgue"
  shows  "integrable lebesgue (\x. if x \ S then f x else 0) \ integrable (lebesgue_on S) f"
  using has_bochner_integral_restrict_space [of S lebesgue f] assms
  by (simp add: integrable.simps indicator_scaleR_eq_if)

lemma integral_mono_lebesgue_on_AE:
  fixes f::"_ \ real"
  assumes f: "integrable (lebesgue_on T) f"
    and gf: "AE x in (lebesgue_on S). g x \ f x"
    and f0: "AE x in (lebesgue_on T). 0 \ f x"
    and "S \ T" and S: "S \ sets lebesgue" and T: "T \ sets lebesgue"
  shows "(\x. g x \(lebesgue_on S)) \ (\x. f x \(lebesgue_on T))"
proof -
  have "(\x. g x \(lebesgue_on S)) = (\x. (if x \ S then g x else 0) \lebesgue)"
    by (simp add: Lebesgue_Measure.integral_restrict_UNIV S)
  also have "\ \ (\x. (if x \ T then f x else 0) \lebesgue)"
  proof (rule Bochner_Integration.integral_mono_AE')
    show "integrable lebesgue (\x. if x \ T then f x else 0)"
      by (simp add: integrable_restrict_UNIV T f)
    show "AE x in lebesgue. (if x \ S then g x else 0) \ (if x \ T then f x else 0)"
      using assms by (auto simp: AE_restrict_space_iff)
    show "AE x in lebesgue. 0 \ (if x \ T then f x else 0)"
      using f0 by (simp add: AE_restrict_space_iff T)
  qed
  also have "\ = (\x. f x \(lebesgue_on T))"
    using Lebesgue_Measure.integral_restrict_UNIV T by blast
  finally show ?thesis .
qed


subsection \<open>Borel measurability\<close>

lemma borel_measurable_if_I:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  assumes f: "f \ borel_measurable (lebesgue_on S)" and S: "S \ sets lebesgue"
  shows "(\x. if x \ S then f x else 0) \ borel_measurable lebesgue"
proof -
  have eq: "{x. x \ S} \ {x. f x \ Y} = {x. x \ S} \ {x. f x \ Y} \ S" for Y
    by blast
  show ?thesis
  using f S
  apply (simp add: vimage_def in_borel_measurable_borel Ball_def)
  apply (elim all_forward imp_forward asm_rl)
  apply (simp only: Collect_conj_eq Collect_disj_eq imp_conv_disj eq)
  apply (auto simp: Compl_eq [symmetric] Compl_in_sets_lebesgue sets_restrict_space_iff)
  done
qed

lemma borel_measurable_if_D:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  assumes "(\x. if x \ S then f x else 0) \ borel_measurable lebesgue"
  shows "f \ borel_measurable (lebesgue_on S)"
  using assms
  apply (simp add: in_borel_measurable_borel Ball_def)
  apply (elim all_forward imp_forward asm_rl)
  apply (force simp: space_restrict_space sets_restrict_space image_iff intro: rev_bexI)
  done

lemma borel_measurable_if:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  assumes "S \ sets lebesgue"
  shows "(\x. if x \ S then f x else 0) \ borel_measurable lebesgue \ f \ borel_measurable (lebesgue_on S)"
  using assms borel_measurable_if_D borel_measurable_if_I by blast

lemma borel_measurable_if_lebesgue_on:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  assumes "S \ sets lebesgue" "T \ sets lebesgue" "S \ T"
  shows "(\x. if x \ S then f x else 0) \ borel_measurable (lebesgue_on T) \ f \ borel_measurable (lebesgue_on S)"
    (is "?lhs = ?rhs")
proof
  assume ?lhs then show ?rhs
    using measurable_restrict_mono [OF _ \<open>S \<subseteq> T\<close>]
    by (subst measurable_lebesgue_cong [where g = "(\x. if x \ S then f x else 0)"]) auto
next
  assume ?rhs then show ?lhs
    by (simp add: \<open>S \<in> sets lebesgue\<close> borel_measurable_if_I measurable_restrict_space1)
qed

lemma borel_measurable_vimage_halfspace_component_lt:
     "f \ borel_measurable (lebesgue_on S) \
      (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i < a} \<in> sets (lebesgue_on S))"
  apply (rule trans [OF borel_measurable_iff_halfspace_less])
  apply (fastforce simp add: space_restrict_space)
  done

lemma borel_measurable_vimage_halfspace_component_ge:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  shows "f \ borel_measurable (lebesgue_on S) \
         (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i \<ge> a} \<in> sets (lebesgue_on S))"
  apply (rule trans [OF borel_measurable_iff_halfspace_ge])
  apply (fastforce simp add: space_restrict_space)
  done

lemma borel_measurable_vimage_halfspace_component_gt:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  shows "f \ borel_measurable (lebesgue_on S) \
         (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i > a} \<in> sets (lebesgue_on S))"
  apply (rule trans [OF borel_measurable_iff_halfspace_greater])
  apply (fastforce simp add: space_restrict_space)
  done

lemma borel_measurable_vimage_halfspace_component_le:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  shows "f \ borel_measurable (lebesgue_on S) \
         (\<forall>a i. i \<in> Basis \<longrightarrow> {x \<in> S. f x \<bullet> i \<le> a} \<in> sets (lebesgue_on S))"
  apply (rule trans [OF borel_measurable_iff_halfspace_le])
  apply (fastforce simp add: space_restrict_space)
  done

lemma
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  shows borel_measurable_vimage_open_interval:
         "f \ borel_measurable (lebesgue_on S) \
         (\<forall>a b. {x \<in> S. f x \<in> box a b} \<in> sets (lebesgue_on S))" (is ?thesis1)
   and borel_measurable_vimage_open:
         "f \ borel_measurable (lebesgue_on S) \
         (\<forall>T. open T \<longrightarrow> {x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S))" (is ?thesis2)
proof -
  have "{x \ S. f x \ box a b} \ sets (lebesgue_on S)" if "f \ borel_measurable (lebesgue_on S)" for a b
  proof -
    have "S = S \ space lebesgue"
      by simp
    then have "S \ (f -` box a b) \ sets (lebesgue_on S)"
      by (metis (no_types) box_borel in_borel_measurable_borel inf_sup_aci(1) space_restrict_space that)
    then show ?thesis
      by (simp add: Collect_conj_eq vimage_def)
  qed
  moreover
  have "{x \ S. f x \ T} \ sets (lebesgue_on S)"
       if T: "\a b. {x \ S. f x \ box a b} \ sets (lebesgue_on S)" "open T" for T
  proof -
    obtain \<D> where "countable \<D>" and \<D>: "\<And>X. X \<in> \<D> \<Longrightarrow> \<exists>a b. X = box a b" "\<Union>\<D> = T"
      using open_countable_Union_open_box that \<open>open T\<close> by metis
    then have eq: "{x \ S. f x \ T} = (\U \ \. {x \ S. f x \ U})"
      by blast
    have "{x \ S. f x \ U} \ sets (lebesgue_on S)" if "U \ \" for U
      using that T \<D> by blast
    then show ?thesis
      by (auto simp: eq intro: Sigma_Algebra.sets.countable_UN' [OF \countable \\])
  qed
  moreover
  have eq: "{x \ S. f x \ i < a} = {x \ S. f x \ {y. y \ i < a}}" for i a
    by auto
  have "f \ borel_measurable (lebesgue_on S)"
    if "\T. open T \ {x \ S. f x \ T} \ sets (lebesgue_on S)"
    by (metis (no_types) eq borel_measurable_vimage_halfspace_component_lt open_halfspace_component_lt that)
  ultimately show "?thesis1" "?thesis2"
    by blast+
qed

lemma borel_measurable_vimage_closed:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  shows "f \ borel_measurable (lebesgue_on S) \
         (\<forall>T. closed T \<longrightarrow> {x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S))"
        (is "?lhs = ?rhs")
proof -
  have eq: "{x \ S. f x \ T} = S - {x \ S. f x \ (- T)}" for T
    by auto
  show ?thesis
    apply (simp add: borel_measurable_vimage_open, safe)
     apply (simp_all (no_asm) add: eq)
     apply (intro sets.Diff sets_lebesgue_on_refl, force simp: closed_open)
    apply (intro sets.Diff sets_lebesgue_on_refl, force simp: open_closed)
    done
qed

lemma borel_measurable_vimage_closed_interval:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  shows "f \ borel_measurable (lebesgue_on S) \
         (\<forall>a b. {x \<in> S. f x \<in> cbox a b} \<in> sets (lebesgue_on S))"
        (is "?lhs = ?rhs")
proof
  assume ?lhs then show ?rhs
    using borel_measurable_vimage_closed by blast
next
  assume RHS: ?rhs
  have "{x \ S. f x \ T} \ sets (lebesgue_on S)" if "open T" for T
  proof -
    obtain \<D> where "countable \<D>" and \<D>: "\<D> \<subseteq> Pow T" "\<And>X. X \<in> \<D> \<Longrightarrow> \<exists>a b. X = cbox a b" "\<Union>\<D> = T"
      using open_countable_Union_open_cbox that \<open>open T\<close> by metis
    then have eq: "{x \ S. f x \ T} = (\U \ \. {x \ S. f x \ U})"
      by blast
    have "{x \ S. f x \ U} \ sets (lebesgue_on S)" if "U \ \" for U
      using that \<D> by (metis RHS)
    then show ?thesis
      by (auto simp: eq intro: Sigma_Algebra.sets.countable_UN' [OF \countable \\])
  qed
  then show ?lhs
    by (simp add: borel_measurable_vimage_open)
qed

lemma borel_measurable_vimage_borel:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  shows "f \ borel_measurable (lebesgue_on S) \
         (\<forall>T. T \<in> sets borel \<longrightarrow> {x \<in> S. f x \<in> T} \<in> sets (lebesgue_on S))"
        (is "?lhs = ?rhs")
proof
  assume f: ?lhs
  then show ?rhs
    using measurable_sets [OF f]
      by (simp add: Collect_conj_eq inf_sup_aci(1) space_restrict_space vimage_def)
qed (simp add: borel_measurable_vimage_open_interval)

lemma lebesgue_measurable_vimage_borel:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  assumes "f \ borel_measurable lebesgue" "T \ sets borel"
  shows "{x. f x \ T} \ sets lebesgue"
  using assms borel_measurable_vimage_borel [of f UNIV] by auto

lemma borel_measurable_lebesgue_preimage_borel:
  fixes f :: "'a::euclidean_space \ 'b::euclidean_space"
  shows "f \ borel_measurable lebesgue \
         (\<forall>T. T \<in> sets borel \<longrightarrow> {x. f x \<in> T} \<in> sets lebesgue)"
  apply (intro iffI allI impI lebesgue_measurable_vimage_borel)
    apply (auto simp: in_borel_measurable_borel vimage_def)
  done


subsection \<^marker>\<open>tag unimportant\<close> \<open>Measurability of continuous functions\<close>

lemma continuous_imp_measurable_on_sets_lebesgue:
  assumes f: "continuous_on S f" and S: "S \ sets lebesgue"
  shows "f \ borel_measurable (lebesgue_on S)"
proof -
  have "sets (restrict_space borel S) \ sets (lebesgue_on S)"
    by (simp add: mono_restrict_space subsetI)
  then show ?thesis
    by (simp add: borel_measurable_continuous_on_restrict [OF f] borel_measurable_subalgebra 
                  space_restrict_space)
qed

lemma id_borel_measurable_lebesgue [iff]: "id \ borel_measurable lebesgue"
  by (simp add: measurable_completion)

lemma id_borel_measurable_lebesgue_on [iff]: "id \ borel_measurable (lebesgue_on S)"
  by (simp add: measurable_completion measurable_restrict_space1)

context
begin

interpretation sigma_finite_measure "interval_measure (\x. x)"
  by (rule sigma_finite_interval_measure) auto
interpretation finite_product_sigma_finite "\_. interval_measure (\x. x)" Basis
  proof qed simp

lemma lborel_eq_real: "lborel = interval_measure (\x. x)"
  unfolding lborel_def Basis_real_def
  using distr_id[of "interval_measure (\x. x)"]
  by (subst distr_component[symmetric])
     (simp_all add: distr_distr comp_def del: distr_id cong: distr_cong)

lemma lborel_eq: "lborel = distr (\\<^sub>M b\Basis. lborel) borel (\f. \b\Basis. f b *\<^sub>R b)"
  by (subst lborel_def) (simp add: lborel_eq_real)

lemma nn_integral_lborel_prod:
  assumes [measurable]: "\b. b \ Basis \ f b \ borel_measurable borel"
  assumes nn[simp]: "\b x. b \ Basis \ 0 \ f b x"
  shows "(\\<^sup>+x. (\b\Basis. f b (x \ b)) \lborel) = (\b\Basis. (\\<^sup>+x. f b x \lborel))"
  by (simp add: lborel_def nn_integral_distr product_nn_integral_prod
                product_nn_integral_singleton)

lemma emeasure_lborel_Icc[simp]:
  fixes l u :: real
  assumes [simp]: "l \ u"
  shows "emeasure lborel {l .. u} = u - l"
proof -
  have "((\f. f 1) -` {l..u} \ space (Pi\<^sub>M {1} (\b. interval_measure (\x. x)))) = {1::real} \\<^sub>E {l..u}"
    by (auto simp: space_PiM)
  then show ?thesis
    by (simp add: lborel_def emeasure_distr emeasure_PiM emeasure_interval_measure_Icc)
qed

lemma emeasure_lborel_Icc_eq: "emeasure lborel {l .. u} = ennreal (if l \ u then u - l else 0)"
  by simp

lemma\<^marker>\<open>tag important\<close> emeasure_lborel_cbox[simp]:
  assumes [simp]: "\b. b \ Basis \ l \ b \ u \ b"
  shows "emeasure lborel (cbox l u) = (\b\Basis. (u - l) \ b)"
proof -
  have "(\x. \b\Basis. indicator {l\b .. u\b} (x \ b) :: ennreal) = indicator (cbox l u)"
    by (auto simp: fun_eq_iff cbox_def split: split_indicator)
  then have "emeasure lborel (cbox l u) = (\\<^sup>+x. (\b\Basis. indicator {l\b .. u\b} (x \ b)) \lborel)"
    by simp
  also have "\ = (\b\Basis. (u - l) \ b)"
    by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left)
  finally show ?thesis .
qed

lemma AE_lborel_singleton: "AE x in lborel::'a::euclidean_space measure. x \ c"
  using SOME_Basis AE_discrete_difference [of "{c}" lborel] emeasure_lborel_cbox [of c c]
  by (auto simp add: power_0_left)

lemma emeasure_lborel_Ioo[simp]:
  assumes [simp]: "l \ u"
  shows "emeasure lborel {l <..< u} = ennreal (u - l)"
proof -
  have "emeasure lborel {l <..< u} = emeasure lborel {l .. u}"
    using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto
  then show ?thesis
    by simp
qed

lemma emeasure_lborel_Ioc[simp]:
  assumes [simp]: "l \ u"
  shows "emeasure lborel {l <.. u} = ennreal (u - l)"
proof -
  have "emeasure lborel {l <.. u} = emeasure lborel {l .. u}"
    using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto
  then show ?thesis
    by simp
qed

lemma emeasure_lborel_Ico[simp]:
  assumes [simp]: "l \ u"
  shows "emeasure lborel {l ..< u} = ennreal (u - l)"
proof -
  have "emeasure lborel {l ..< u} = emeasure lborel {l .. u}"
    using AE_lborel_singleton[of u] AE_lborel_singleton[of l] by (intro emeasure_eq_AE) auto
  then show ?thesis
    by simp
qed

lemma emeasure_lborel_box[simp]:
  assumes [simp]: "\b. b \ Basis \ l \ b \ u \ b"
  shows "emeasure lborel (box l u) = (\b\Basis. (u - l) \ b)"
proof -
  have "(\x. \b\Basis. indicator {l\b <..< u\b} (x \ b) :: ennreal) = indicator (box l u)"
    by (auto simp: fun_eq_iff box_def split: split_indicator)
  then have "emeasure lborel (box l u) = (\\<^sup>+x. (\b\Basis. indicator {l\b <..< u\b} (x \ b)) \lborel)"
    by simp
  also have "\ = (\b\Basis. (u - l) \ b)"
    by (subst nn_integral_lborel_prod) (simp_all add: prod_ennreal inner_diff_left)
  finally show ?thesis .
qed

lemma emeasure_lborel_cbox_eq:
  "emeasure lborel (cbox l u) = (if \b\Basis. l \ b \ u \ b then \b\Basis. (u - l) \ b else 0)"
  using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le)

lemma emeasure_lborel_box_eq:
  "emeasure lborel (box l u) = (if \b\Basis. l \ b \ u \ b then \b\Basis. (u - l) \ b else 0)"
  using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le) force

lemma emeasure_lborel_singleton[simp]: "emeasure lborel {x} = 0"
  using emeasure_lborel_cbox[of x x] nonempty_Basis
  by (auto simp del: emeasure_lborel_cbox nonempty_Basis)

lemma emeasure_lborel_cbox_finite: "emeasure lborel (cbox a b) < \"
  by (auto simp: emeasure_lborel_cbox_eq)

lemma emeasure_lborel_box_finite: "emeasure lborel (box a b) < \"
  by (auto simp: emeasure_lborel_box_eq)

lemma emeasure_lborel_ball_finite: "emeasure lborel (ball c r) < \"
proof -
  have "bounded (ball c r)" by simp
  from bounded_subset_cbox_symmetric[OF this] obtain a where a: "ball c r \ cbox (-a) a"
    by auto
  hence "emeasure lborel (ball c r) \ emeasure lborel (cbox (-a) a)"
    by (intro emeasure_mono) auto
  also have "\ < \" by (simp add: emeasure_lborel_cbox_eq)
  finally show ?thesis .
qed

lemma emeasure_lborel_cball_finite: "emeasure lborel (cball c r) < \"
proof -
  have "bounded (cball c r)" by simp
  from bounded_subset_cbox_symmetric[OF this] obtain a where a: "cball c r \ cbox (-a) a"
    by auto
  hence "emeasure lborel (cball c r) \ emeasure lborel (cbox (-a) a)"
    by (intro emeasure_mono) auto
  also have "\ < \" by (simp add: emeasure_lborel_cbox_eq)
  finally show ?thesis .
qed

lemma fmeasurable_cbox [iff]: "cbox a b \ fmeasurable lborel"
  and fmeasurable_box [iff]: "box a b \ fmeasurable lborel"
  by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq)

lemma
  fixes l u :: real
  assumes [simp]: "l \ u"
  shows measure_lborel_Icc[simp]: "measure lborel {l .. u} = u - l"
    and measure_lborel_Ico[simp]: "measure lborel {l ..< u} = u - l"
    and measure_lborel_Ioc[simp]: "measure lborel {l <.. u} = u - l"
    and measure_lborel_Ioo[simp]: "measure lborel {l <..< u} = u - l"
  by (simp_all add: measure_def)

lemma
  assumes [simp]: "\b. b \ Basis \ l \ b \ u \ b"
  shows measure_lborel_box[simp]: "measure lborel (box l u) = (\b\Basis. (u - l) \ b)"
    and measure_lborel_cbox[simp]: "measure lborel (cbox l u) = (\b\Basis. (u - l) \ b)"
  by (simp_all add: measure_def inner_diff_left prod_nonneg)

lemma measure_lborel_cbox_eq:
  "measure lborel (cbox l u) = (if \b\Basis. l \ b \ u \ b then \b\Basis. (u - l) \ b else 0)"
  using box_eq_empty(2)[THEN iffD2, of u l] by (auto simp: not_le)

lemma measure_lborel_box_eq:
  "measure lborel (box l u) = (if \b\Basis. l \ b \ u \ b then \b\Basis. (u - l) \ b else 0)"
  using box_eq_empty(1)[THEN iffD2, of u l] by (auto simp: not_le dest!: less_imp_le) force

lemma measure_lborel_singleton[simp]: "measure lborel {x} = 0"
  by (simp add: measure_def)

lemma sigma_finite_lborel: "sigma_finite_measure lborel"
proof
  show "\A::'a set set. countable A \ A \ sets lborel \ \A = space lborel \ (\a\A. emeasure lborel a \ \)"
    by (intro exI[of _ "range (\n::nat. box (- real n *\<^sub>R One) (real n *\<^sub>R One))"])
       (auto simp: emeasure_lborel_cbox_eq UN_box_eq_UNIV)
qed

end

lemma emeasure_lborel_UNIV [simp]: "emeasure lborel (UNIV::'a::euclidean_space set) = \"
proof -
  { fix n::nat
    let ?Ba = "Basis :: 'a set"
    have "real n \ (2::real) ^ card ?Ba * real n"
      by (simp add: mult_le_cancel_right1)
    also
    have "... \ (2::real) ^ card ?Ba * real (Suc n) ^ card ?Ba"
      apply (rule mult_left_mono)
      apply (metis DIM_positive One_nat_def less_eq_Suc_le less_imp_le of_nat_le_iff of_nat_power self_le_power zero_less_Suc)
      apply (simp)
      done
    finally have "real n \ (2::real) ^ card ?Ba * real (Suc n) ^ card ?Ba" .
  } note [intro!] = this
  show ?thesis
    unfolding UN_box_eq_UNIV[symmetric]
    apply (subst SUP_emeasure_incseq[symmetric])
    apply (auto simp: incseq_def subset_box inner_add_left
      simp del: Sup_eq_top_iff SUP_eq_top_iff
      intro!: ennreal_SUP_eq_top)
    done
qed

lemma emeasure_lborel_countable:
  fixes A :: "'a::euclidean_space set"
  assumes "countable A"
  shows "emeasure lborel A = 0"
proof -
  have "A \ (\i. {from_nat_into A i})" using from_nat_into_surj assms by force
  then have "emeasure lborel A \ emeasure lborel (\i. {from_nat_into A i})"
    by (intro emeasure_mono) auto
  also have "emeasure lborel (\i. {from_nat_into A i}) = 0"
    by (rule emeasure_UN_eq_0) auto
  finally show ?thesis
    by (auto simp add: )
qed

lemma countable_imp_null_set_lborel: "countable A \ A \ null_sets lborel"
  by (simp add: null_sets_def emeasure_lborel_countable sets.countable)

lemma finite_imp_null_set_lborel: "finite A \ A \ null_sets lborel"
  by (intro countable_imp_null_set_lborel countable_finite)

lemma insert_null_sets_iff [simp]: "insert a N \ null_sets lebesgue \ N \ null_sets lebesgue"
    (is "?lhs = ?rhs")
proof
  assume ?lhs then show ?rhs
    by (meson completion.complete2 subset_insertI)
next
  assume ?rhs then show ?lhs
  by (simp add: null_sets.insert_in_sets null_setsI)
qed

lemma insert_null_sets_lebesgue_on_iff [simp]:
  assumes "a \ S" "S \ sets lebesgue"
  shows "insert a N \ null_sets (lebesgue_on S) \ N \ null_sets (lebesgue_on S)"
  by (simp add: assms null_sets_restrict_space)

lemma lborel_neq_count_space[simp]: "lborel \ count_space (A::('a::ordered_euclidean_space) set)"
proof
  assume asm: "lborel = count_space A"
  have "space lborel = UNIV" by simp
  hence [simp]: "A = UNIV" by (subst (asm) asm) (simp only: space_count_space)
  have "emeasure lborel {undefined::'a} = 1"
      by (subst asm, subst emeasure_count_space_finite) auto
  moreover have "emeasure lborel {undefined} \ 1" by simp
  ultimately show False by contradiction
qed

lemma mem_closed_if_AE_lebesgue_open:
  assumes "open S" "closed C"
  assumes "AE x \ S in lebesgue. x \ C"
  assumes "x \ S"
  shows "x \ C"
proof (rule ccontr)
  assume xC: "x \ C"
  with openE[of "S - C"] assms
  obtain e where e: "0 < e" "ball x e \ S - C"
    by blast
  then obtain a b where box: "x \ box a b" "box a b \ S - C"
    by (metis rational_boxes order_trans)
  then have "0 < emeasure lebesgue (box a b)"
    by (auto simp: emeasure_lborel_box_eq mem_box algebra_simps intro!: prod_pos)
  also have "\ \ emeasure lebesgue (S - C)"
    using assms box
    by (auto intro!: emeasure_mono)
  also have "\ = 0"
    using assms
    by (auto simp: eventually_ae_filter completion.complete2 set_diff_eq null_setsD1)
  finally show False by simp
qed

lemma mem_closed_if_AE_lebesgue: "closed C \ (AE x in lebesgue. x \ C) \ x \ C"
  using mem_closed_if_AE_lebesgue_open[OF open_UNIV] by simp


subsection \<open>Affine transformation on the Lebesgue-Borel\<close>

lemma\<^marker>\<open>tag important\<close> lborel_eqI:
  fixes M :: "'a::euclidean_space measure"
  assumes emeasure_eq: "\l u. (\b. b \ Basis \ l \ b \ u \ b) \ emeasure M (box l u) = (\b\Basis. (u - l) \ b)"
  assumes sets_eq: "sets M = sets borel"
  shows "lborel = M"
proof (rule measure_eqI_generator_eq)
  let ?E = "range (\(a, b). box a b::'a set)"
  show "Int_stable ?E"
    by (auto simp: Int_stable_def box_Int_box)

  show "?E \ Pow UNIV" "sets lborel = sigma_sets UNIV ?E" "sets M = sigma_sets UNIV ?E"
    by (simp_all add: borel_eq_box sets_eq)

  let ?A = "\n::nat. box (- (real n *\<^sub>R One)) (real n *\<^sub>R One) :: 'a set"
  show "range ?A \ ?E" "(\i. ?A i) = UNIV"
    unfolding UN_box_eq_UNIV by auto

  { fix i show "emeasure lborel (?A i) \ \" by auto }
  { fix X assume "X \ ?E" then show "emeasure lborel X = emeasure M X"
      apply (auto simp: emeasure_eq emeasure_lborel_box_eq)
      apply (subst box_eq_empty(1)[THEN iffD2])
      apply (auto intro: less_imp_le simp: not_le)
      done }
qed

lemma\<^marker>\<open>tag important\<close> lborel_affine_euclidean:
  fixes c :: "'a::euclidean_space \ real" and t
  defines "T x \ t + (\j\Basis. (c j * (x \ j)) *\<^sub>R j)"
  assumes c: "\j. j \ Basis \ c j \ 0"
  shows "lborel = density (distr lborel borel T) (\_. (\j\Basis. \c j\))" (is "_ = ?D")
proof (rule lborel_eqI)
  let ?B = "Basis :: 'a set"
  fix l u assume le: "\b. b \ ?B \ l \ b \ u \ b"
  have [measurable]: "T \ borel \\<^sub>M borel"
    by (simp add: T_def[abs_def])
  have eq: "T -` box l u = box
    (\<Sum>j\<in>Basis. (((if 0 < c j then l - t else u - t) \<bullet> j) / c j) *\<^sub>R j)
    (\<Sum>j\<in>Basis. (((if 0 < c j then u - t else l - t) \<bullet> j) / c j) *\<^sub>R j)"
    using c by (auto simp: box_def T_def field_simps inner_simps divide_less_eq)
  with le c show "emeasure ?D (box l u) = (\b\?B. (u - l) \ b)"
    by (auto simp: emeasure_density emeasure_distr nn_integral_multc emeasure_lborel_box_eq inner_simps
                   field_split_simps ennreal_mult'[symmetric] prod_nonneg prod.distrib[symmetric]
             intro!: prod.cong)
qed simp

lemma lborel_affine:
  fixes t :: "'a::euclidean_space"
  shows "c \ 0 \ lborel = density (distr lborel borel (\x. t + c *\<^sub>R x)) (\_. \c\^DIM('a))"
  using lborel_affine_euclidean[where c="\_::'a. c" and t=t]
  unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation prod_constant by simp

lemma lborel_real_affine:
  "c \ 0 \ lborel = density (distr lborel borel (\x. t + c * x)) (\_. ennreal (abs c))"
  using lborel_affine[of c t] by simp

lemma AE_borel_affine:
  fixes P :: "real \ bool"
  shows "c \ 0 \ Measurable.pred borel P \ AE x in lborel. P x \ AE x in lborel. P (t + c * x)"
  by (subst lborel_real_affine[where t="- t / c" and c="1 / c"])
     (simp_all add: AE_density AE_distr_iff field_simps)

lemma nn_integral_real_affine:
  fixes c :: real assumes [measurable]: "f \ borel_measurable borel" and c: "c \ 0"
  shows "(\\<^sup>+x. f x \lborel) = \c\ * (\\<^sup>+x. f (t + c * x) \lborel)"
  by (subst lborel_real_affine[OF c, of t])
     (simp add: nn_integral_density nn_integral_distr nn_integral_cmult)

lemma lborel_integrable_real_affine:
  fixes f :: "real \ 'a :: {banach, second_countable_topology}"
  assumes f: "integrable lborel f"
  shows "c \ 0 \ integrable lborel (\x. f (t + c * x))"
  using f f[THEN borel_measurable_integrable] unfolding integrable_iff_bounded
  by (subst (asm) nn_integral_real_affine[where c=c and t=t]) (auto simp: ennreal_mult_less_top)

lemma lborel_integrable_real_affine_iff:
  fixes f :: "real \ 'a :: {banach, second_countable_topology}"
  shows "c \ 0 \ integrable lborel (\x. f (t + c * x)) \ integrable lborel f"
  using
    lborel_integrable_real_affine[of f c t]
    lborel_integrable_real_affine[of "\x. f (t + c * x)" "1/c" "-t/c"]
  by (auto simp add: field_simps)

lemma\<^marker>\<open>tag important\<close> lborel_integral_real_affine:
  fixes f :: "real \ 'a :: {banach, second_countable_topology}" and c :: real
  assumes c: "c \ 0" shows "(\x. f x \ lborel) = \c\ *\<^sub>R (\x. f (t + c * x) \lborel)"
proof cases
  assume f[measurable]: "integrable lborel f" then show ?thesis
    using c f f[THEN borel_measurable_integrable] f[THEN lborel_integrable_real_affine, of c t]
    by (subst lborel_real_affine[OF c, of t])
       (simp add: integral_density integral_distr)
next
  assume "\ integrable lborel f" with c show ?thesis
    by (simp add: lborel_integrable_real_affine_iff not_integrable_integral_eq)
qed

lemma
  fixes c :: "'a::euclidean_space \ real" and t
  assumes c: "\j. j \ Basis \ c j \ 0"
  defines "T == (\x. t + (\j\Basis. (c j * (x \ j)) *\<^sub>R j))"
  shows lebesgue_affine_euclidean: "lebesgue = density (distr lebesgue lebesgue T) (\_. (\j\Basis. \c j\))" (is "_ = ?D")
    and lebesgue_affine_measurable: "T \ lebesgue \\<^sub>M lebesgue"
proof -
  have T_borel[measurable]: "T \ borel \\<^sub>M borel"
    by (auto simp: T_def[abs_def])
  { fix A :: "'a set" assume A: "A \ sets borel"
    then have "emeasure lborel A = 0 \ emeasure (density (distr lborel borel T) (\_. (\j\Basis. \c j\))) A = 0"
      unfolding T_def using c by (subst lborel_affine_euclidean[symmetric]) auto
    also have "\ \ emeasure (distr lebesgue lborel T) A = 0"
      using A c by (simp add: distr_completion emeasure_density nn_integral_cmult prod_nonneg cong: distr_cong)
    finally have "emeasure lborel A = 0 \ emeasure (distr lebesgue lborel T) A = 0" . }
  then have eq: "null_sets lborel = null_sets (distr lebesgue lborel T)"
    by (auto simp: null_sets_def)

  show "T \ lebesgue \\<^sub>M lebesgue"
    by (rule completion.measurable_completion2) (auto simp: eq measurable_completion)

  have "lebesgue = completion (density (distr lborel borel T) (\_. (\j\Basis. \c j\)))"
    using c by (subst lborel_affine_euclidean[of c t]) (simp_all add: T_def[abs_def])
  also have "\ = density (completion (distr lebesgue lborel T)) (\_. (\j\Basis. \c j\))"
    using c by (auto intro!: always_eventually prod_pos completion_density_eq simp: distr_completion cong: distr_cong)
  also have "\ = density (distr lebesgue lebesgue T) (\_. (\j\Basis. \c j\))"
    by (subst completion.completion_distr_eq) (auto simp: eq measurable_completion)
  finally show "lebesgue = density (distr lebesgue lebesgue T) (\_. (\j\Basis. \c j\))" .
qed

corollary lebesgue_real_affine:
  "c \ 0 \ lebesgue = density (distr lebesgue lebesgue (\x. t + c * x)) (\_. ennreal (abs c))"
    using lebesgue_affine_euclidean [where c= "\x::real. c"] by simp

lemma nn_integral_real_affine_lebesgue:
  fixes c :: real assumes f[measurable]: "f \ borel_measurable lebesgue" and c: "c \ 0"
  shows "(\\<^sup>+x. f x \lebesgue) = ennreal\c\ * (\\<^sup>+x. f(t + c * x) \lebesgue)"
proof -
  have "(\\<^sup>+x. f x \lebesgue) = (\\<^sup>+x. f x \density (distr lebesgue lebesgue (\x. t + c * x)) (\x. ennreal \c\))"
    using lebesgue_real_affine c by auto
  also have "\ = \\<^sup>+ x. ennreal \c\ * f x \distr lebesgue lebesgue (\x. t + c * x)"
    by (subst nn_integral_density) auto
  also have "\ = ennreal \c\ * integral\<^sup>N (distr lebesgue lebesgue (\x. t + c * x)) f"
    using f measurable_distr_eq1 nn_integral_cmult by blast
  also have "\ = \c\ * (\\<^sup>+x. f(t + c * x) \lebesgue)"
    using lebesgue_affine_measurable[where c= "\x::real. c"]
    by (subst nn_integral_distr) (force+)
  finally show ?thesis .
qed

lemma lebesgue_measurable_scaling[measurable]: "(*\<^sub>R) x \ lebesgue \\<^sub>M lebesgue"
proof cases
  assume "x = 0"
  then have "(*\<^sub>R) x = (\x. 0::'a)"
    by (auto simp: fun_eq_iff)
  then show ?thesis by auto
next
  assume "x \ 0" then show ?thesis
    using lebesgue_affine_measurable[of "\_. x" 0]
    unfolding scaleR_scaleR[symmetric] scaleR_sum_right[symmetric] euclidean_representation
    by (auto simp add: ac_simps)
qed

lemma
  fixes m :: real and \<delta> :: "'a::euclidean_space"
  defines "T r d x \ r *\<^sub>R x + d"
  shows emeasure_lebesgue_affine: "emeasure lebesgue (T m \ ` S) = \m\ ^ DIM('a) * emeasure lebesgue S" (is ?e)
    and measure_lebesgue_affine: "measure lebesgue (T m \ ` S) = \m\ ^ DIM('a) * measure lebesgue S" (is ?m)
proof -
  show ?e
  proof cases
    assume "m = 0" then show ?thesis
      by (simp add: image_constant_conv T_def[abs_def])
  next
    let ?T = "T m \" and ?T' = "T (1 / m) (- ((1/m) *\<^sub>R \))"
    assume "m \ 0"
    then have s_comp_s: "?T' \ ?T = id" "?T \ ?T' = id"
      by (auto simp: T_def[abs_def] fun_eq_iff scaleR_add_right scaleR_diff_right)
    then have "inv ?T' = ?T" "bij ?T'"
      by (auto intro: inv_unique_comp o_bij)
    then have eq: "T m \ ` S = T (1 / m) ((-1/m) *\<^sub>R \) -` S \ space lebesgue"
      using bij_vimage_eq_inv_image[OF \<open>bij ?T'\<close>, of S] by auto

    have trans_eq_T: "(\x. \ + (\j\Basis. (m * (x \ j)) *\<^sub>R j)) = T m \" for m \
      unfolding T_def[abs_def] scaleR_scaleR[symmetric] scaleR_sum_right[symmetric]
      by (auto simp add: euclidean_representation ac_simps)

    have T[measurable]: "T r d \ lebesgue \\<^sub>M lebesgue" for r d
      using lebesgue_affine_measurable[of "\_. r" d]
      by (cases "r = 0") (auto simp: trans_eq_T T_def[abs_def])

    show ?thesis
    proof cases
      assume "S \ sets lebesgue" with \m \ 0\ show ?thesis
        unfolding eq
        apply (subst lebesgue_affine_euclidean[of "\_. m" \])
        apply (simp_all add: emeasure_density trans_eq_T nn_integral_cmult emeasure_distr
                        del: space_completion emeasure_completion)
        apply (simp add: vimage_comp s_comp_s)
        done
    next
      assume "S \ sets lebesgue"
      moreover have "?T ` S \ sets lebesgue"
      proof
        assume "?T ` S \ sets lebesgue"
        then have "?T -` (?T ` S) \ space lebesgue \ sets lebesgue"
          by (rule measurable_sets[OF T])
        also have "?T -` (?T ` S) \ space lebesgue = S"
          by (simp add: vimage_comp s_comp_s eq)
        finally show False using \<open>S \<notin> sets lebesgue\<close> by auto
      qed
      ultimately show ?thesis
        by (simp add: emeasure_notin_sets)
    qed
  qed
  show ?m
    unfolding measure_def \<open>?e\<close> by (simp add: enn2real_mult prod_nonneg)
qed

lemma lebesgue_real_scale:
  assumes "c \ 0"
  shows   "lebesgue = density (distr lebesgue lebesgue (\x. c * x)) (\x. ennreal \c\)"
  using assms by (subst lebesgue_affine_euclidean[of "\_. c" 0]) simp_all

lemma divideR_right:
  fixes x y :: "'a::real_normed_vector"
  shows "r \ 0 \ y = x /\<^sub>R r \ r *\<^sub>R y = x"
  using scaleR_cancel_left[of r y "x /\<^sub>R r"] by simp

lemma lborel_has_bochner_integral_real_affine_iff:
  fixes x :: "'a :: {banach, second_countable_topology}"
  shows "c \ 0 \
    has_bochner_integral lborel f x \<longleftrightarrow>
    has_bochner_integral lborel (\<lambda>x. f (t + c * x)) (x /\<^sub>R \<bar>c\<bar>)"
  unfolding has_bochner_integral_iff lborel_integrable_real_affine_iff
  by (simp_all add: lborel_integral_real_affine[symmetric] divideR_right cong: conj_cong)

lemma lborel_distr_uminus: "distr lborel borel uminus = (lborel :: real measure)"
  by (subst lborel_real_affine[of "-1" 0])
     (auto simp: density_1 one_ennreal_def[symmetric])

lemma lborel_distr_mult:
  assumes "(c::real) \ 0"
  shows "distr lborel borel ((*) c) = density lborel (\_. inverse \c\)"
proof-
  have "distr lborel borel ((*) c) = distr lborel lborel ((*) c)" by (simp cong: distr_cong)
  also from assms have "... = density lborel (\_. inverse \c\)"
    by (subst lborel_real_affine[of "inverse c" 0]) (auto simp: o_def distr_density_distr)
  finally show ?thesis .
qed

lemma lborel_distr_mult':
  assumes "(c::real) \ 0"
  shows "lborel = density (distr lborel borel ((*) c)) (\_. \c\)"
proof-
  have "lborel = density lborel (\_. 1)" by (rule density_1[symmetric])
  also from assms have "(\_. 1 :: ennreal) = (\_. inverse \c\ * \c\)" by (intro ext) simp
  also have "density lborel ... = density (density lborel (\_. inverse \c\)) (\_. \c\)"
    by (subst density_density_eq) (auto simp: ennreal_mult)
  also from assms have "density lborel (\_. inverse \c\) = distr lborel borel ((*) c)"
    by (rule lborel_distr_mult[symmetric])
  finally show ?thesis .
qed

lemma lborel_distr_plus:
  fixes c :: "'a::euclidean_space"
  shows "distr lborel borel ((+) c) = lborel"
by (subst lborel_affine[of 1 c], auto simp: density_1)

interpretation lborel: sigma_finite_measure lborel
  by (rule sigma_finite_lborel)

interpretation lborel_pair: pair_sigma_finite lborel lborel ..

lemma\<^marker>\<open>tag important\<close> lborel_prod:
  "lborel \\<^sub>M lborel = (lborel :: ('a::euclidean_space \ 'b::euclidean_space) measure)"
proof (rule lborel_eqI[symmetric], clarify)
  fix la ua :: 'a and lb ub :: 'b
  assume lu: "\a b. (a, b) \ Basis \ (la, lb) \ (a, b) \ (ua, ub) \ (a, b)"
  have [simp]:
    "\b. b \ Basis \ la \ b \ ua \ b"
    "\b. b \ Basis \ lb \ b \ ub \ b"
    "inj_on (\u. (u, 0)) Basis" "inj_on (\u. (0, u)) Basis"
    "(\u. (u, 0)) ` Basis \ (\u. (0, u)) ` Basis = {}"
    "box (la, lb) (ua, ub) = box la ua \ box lb ub"
    using lu[of _ 0] lu[of 0] by (auto intro!: inj_onI simp add: Basis_prod_def ball_Un box_def)
  show "emeasure (lborel \\<^sub>M lborel) (box (la, lb) (ua, ub)) =
      ennreal (prod ((\<bullet>) ((ua, ub) - (la, lb))) Basis)"
    by (simp add: lborel.emeasure_pair_measure_Times Basis_prod_def prod.union_disjoint
                  prod.reindex ennreal_mult inner_diff_left prod_nonneg)
qed (simp add: borel_prod[symmetric])

(* FIXME: conversion in measurable prover *)
lemma lborelD_Collect[measurable (raw)]: "{x\space borel. P x} \ sets borel \ {x\space lborel. P x} \ sets lborel"
  by simp

lemma lborelD[measurable (raw)]: "A \ sets borel \ A \ sets lborel"
  by simp

lemma emeasure_bounded_finite:
  assumes "bounded A" shows "emeasure lborel A < \"
proof -
  obtain a b where "A \ cbox a b"
    by (meson bounded_subset_cbox_symmetric \<open>bounded A\<close>)
  then have "emeasure lborel A \ emeasure lborel (cbox a b)"
    by (intro emeasure_mono) auto
  then show ?thesis
    by (auto simp: emeasure_lborel_cbox_eq prod_nonneg less_top[symmetric] top_unique split: if_split_asm)
qed

lemma emeasure_compact_finite: "compact A \ emeasure lborel A < \"
  using emeasure_bounded_finite[of A] by (auto intro: compact_imp_bounded)

lemma borel_integrable_compact:
  fixes f :: "'a::euclidean_space \ 'b::{banach, second_countable_topology}"
  assumes "compact S" "continuous_on S f"
  shows "integrable lborel (\x. indicator S x *\<^sub>R f x)"
proof cases
  assume "S \ {}"
  have "continuous_on S (\x. norm (f x))"
    using assms by (intro continuous_intros)
  from continuous_attains_sup[OF \<open>compact S\<close> \<open>S \<noteq> {}\<close> this]
  obtain M where M: "\x. x \ S \ norm (f x) \ M"
    by auto
  show ?thesis
  proof (rule integrable_bound)
    show "integrable lborel (\x. indicator S x * M)"
      using assms by (auto intro!: emeasure_compact_finite borel_compact integrable_mult_left)
    show "(\x. indicator S x *\<^sub>R f x) \ borel_measurable lborel"
      using assms by (auto intro!: borel_measurable_continuous_on_indicator borel_compact)
    show "AE x in lborel. norm (indicator S x *\<^sub>R f x) \ norm (indicator S x * M)"
      by (auto split: split_indicator simp: abs_real_def dest!: M)
  qed
qed simp

lemma borel_integrable_atLeastAtMost:
  fixes f :: "real \ real"
  assumes f: "\x. a \ x \ x \ b \ isCont f x"
  shows "integrable lborel (\x. f x * indicator {a .. b} x)" (is "integrable _ ?f")
proof -
  have "integrable lborel (\x. indicator {a .. b} x *\<^sub>R f x)"
  proof (rule borel_integrable_compact)
    from f show "continuous_on {a..b} f"
      by (auto intro: continuous_at_imp_continuous_on)
  qed simp
  then show ?thesis
    by (auto simp: mult.commute)
qed

subsection \<open>Lebesgue measurable sets\<close>

abbreviation\<^marker>\<open>tag important\<close> lmeasurable :: "'a::euclidean_space set set"
where
  "lmeasurable \ fmeasurable lebesgue"

lemma not_measurable_UNIV [simp]: "UNIV \ lmeasurable"
  by (simp add: fmeasurable_def)

lemma\<^marker>\<open>tag important\<close> lmeasurable_iff_integrable:
  "S \ lmeasurable \ integrable lebesgue (indicator S :: 'a::euclidean_space \ real)"
  by (auto simp: fmeasurable_def integrable_iff_bounded borel_measurable_indicator_iff ennreal_indicator)

lemma lmeasurable_cbox [iff]: "cbox a b \ lmeasurable"
  and lmeasurable_box [iff]: "box a b \ lmeasurable"
  by (auto simp: fmeasurable_def emeasure_lborel_box_eq emeasure_lborel_cbox_eq)

lemma
  fixes a::real
  shows lmeasurable_interval [iff]: "{a..b} \ lmeasurable" "{a<.. lmeasurable"
  apply (metis box_real(2) lmeasurable_cbox)
--> --------------------

--> maximum size reached

--> --------------------

[ zur Elbe Produktseite wechseln0.134Quellennavigators  Analyse erneut starten  ]

                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....
    

Besucherstatistik

Besucherstatistik