Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei:   Sprache: SML

Original von: Coq©

(* ========================================================================= *)
(* - This code originates from John Harrison's HOL LIGHT 2.30                *)
(*   (see file LICENSE.sos for license, copyright and disclaimer)            *)
(*   This code is the HOL LIGHT library code used by sos.ml                  *)
(* - Laurent Théry ([email protected]) has isolated the HOL              *)
(*   independent bits                                                        *)
(* - Frédéric Besson ([email protected]) is using it to feed  micromega       *)
(* ========================================================================= *)

open Num

(* ------------------------------------------------------------------------- *)
(* Comparisons that are reflexive on NaN and also short-circuiting.          *)
(* ------------------------------------------------------------------------- *)

let cmp = Pervasives.compare (** FIXME *)

let (=?) = fun x y -> cmp x y = 0;;
let (<?) = fun x y -> cmp x y < 0;;
let (<=?) = fun x y -> cmp x y <= 0;;
let (>?) = fun x y -> cmp x y > 0;;

(* ------------------------------------------------------------------------- *)
(* Combinators.                                                              *)
(* ------------------------------------------------------------------------- *)

let (o) = fun f g x -> f(g x);;

(* ------------------------------------------------------------------------- *)
(* Some useful functions on "num" type.                                      *)
(* ------------------------------------------------------------------------- *)


let num_0 = Int 0
and num_1 = Int 1
and num_2 = Int 2
and num_10 = Int 10;;

let pow2 n = power_num num_2 (Int n);;
let pow10 n = power_num num_10 (Int n);;

let numdom r =
  let r' = Ratio.normalize_ratio (ratio_of_num r) in
  num_of_big_int(Ratio.numerator_ratio r'),
  num_of_big_int(Ratio.denominator_ratio r');;

let numerator = (o) fst numdom
and denominator = (o) snd numdom;;

let gcd_num n1 n2 =
  num_of_big_int(Big_int.gcd_big_int (big_int_of_num n1) (big_int_of_num n2));;

let lcm_num x y =
  if x =/ num_0 && y =/ num_0 then num_0
  else abs_num((x */ y) // gcd_num x y);;


(* ------------------------------------------------------------------------- *)
(* Various versions of list iteration.                                       *)
(* ------------------------------------------------------------------------- *)

let rec end_itlist f l =
  match l with
        []     -> failwith "end_itlist"
      | [x]    -> x
      | (h::t) -> f h (end_itlist f t);;

(* ------------------------------------------------------------------------- *)
(* All pairs arising from applying a function over two lists.                *)
(* ------------------------------------------------------------------------- *)

let rec allpairs f l1 l2 =
  match l1 with
   h1::t1 -> List.fold_right (fun x a -> f h1 x :: a) l2 (allpairs f t1 l2)
  | [] -> [];;

(* ------------------------------------------------------------------------- *)
(* String operations (surely there is a better way...)                       *)
(* ------------------------------------------------------------------------- *)

let implode l = List.fold_right (^) l "";;

let explode s =
  let rec exap n l =
      if n < 0 then l else
      exap (n - 1) ((String.sub s n 1)::l) in
  exap (String.length s - 1) [];;


(* ------------------------------------------------------------------------- *)
(* Repetition of a function.                                                 *)
(* ------------------------------------------------------------------------- *)

let rec funpow n f x =
  if n < 1 then x else funpow (n-1) f (f x);;



(* ------------------------------------------------------------------------- *)
(* Sequences.                                                *)
(* ------------------------------------------------------------------------- *)

let rec (--) = fun m n -> if m > n then [] else m::((m + 1) -- n);;

(* ------------------------------------------------------------------------- *)
(* Various useful list operations.                                           *)
(* ------------------------------------------------------------------------- *)

let rec tryfind f l =
  match l with
      [] -> failwith "tryfind"
    | (h::t) -> try f h with Failure _ -> tryfind f t;;

(* ------------------------------------------------------------------------- *)
(* "Set" operations on lists.                                                *)
(* ------------------------------------------------------------------------- *)

let rec mem x lis =
  match lis with
    [] -> false
  | (h::t) -> x =? h || mem x t;;

let insert x l =
  if mem x l then l else x::l;;

let union l1 l2 = List.fold_right insert l1 l2;;

let subtract l1 l2 = List.filter (fun x -> not (mem x l2)) l1;;

(* ------------------------------------------------------------------------- *)
(* Common measure predicates to use with "sort".                             *)
(* ------------------------------------------------------------------------- *)

let increasing f x y = f x <? f y;;

(* ------------------------------------------------------------------------- *)
(* Iterating functions over lists.                                           *)
(* ------------------------------------------------------------------------- *)

let rec do_list f l =
  match l with
    [] -> ()
  | (h::t) -> (f h; do_list f t);;

(* ------------------------------------------------------------------------- *)
(* Sorting.                                                                  *)
(* ------------------------------------------------------------------------- *)

let rec sort cmp lis =
  match lis with
    [] -> []
  | piv::rest ->
      let r,l = List.partition (cmp piv) rest in
      (sort cmp l) @ (piv::(sort cmp r));;

(* ------------------------------------------------------------------------- *)
(* Removing adjacent (NB!) equal elements from list.                         *)
(* ------------------------------------------------------------------------- *)

let rec uniq l =
  match l with
    x::(y::_ as t) -> let t' = uniq t in
                      if x =? y then t' else
                      if t'==t then l else x::t'
 | _ -> l;;

(* ------------------------------------------------------------------------- *)
(* Convert list into set by eliminating duplicates.                          *)
(* ------------------------------------------------------------------------- *)

let setify s = uniq (sort (<=?) s);;

(* ------------------------------------------------------------------------- *)
(* Polymorphic finite partial functions via Patricia trees.                  *)
(*                                                                           *)
(* The point of this strange representation is that it is canonical (equal   *)
(* functions have the same encoding) yet reasonably efficient on average.    *)
(*                                                                           *)
(* Idea due to Diego Olivier Fernandez Pons (OCaml list, 2003/11/10).        *)
(* ------------------------------------------------------------------------- *)

type ('a,'b)func =
   Empty
 | Leaf of int * ('a*'b)list
 | Branch of int * int * ('a,'b)func * ('a,'b)func;;

(* ------------------------------------------------------------------------- *)
(* Undefined function.                                                       *)
(* ------------------------------------------------------------------------- *)

let undefined = Empty;;

(* ------------------------------------------------------------------------- *)
(* In case of equality comparison worries, better use this.                  *)
(* ------------------------------------------------------------------------- *)

let is_undefined f =
  match f with
    Empty -> true
  | _ -> false;;

(* ------------------------------------------------------------------------- *)
(* Operation analogous to "map" for lists.                                   *)
(* ------------------------------------------------------------------------- *)

let mapf =
  let rec map_list f l =
    match l with
      [] -> []
    | (x,y)::t -> (x,f(y))::(map_list f t) in
  let rec mapf f t =
    match t with
      Empty -> Empty
    | Leaf(h,l) -> Leaf(h,map_list f l)
    | Branch(p,b,l,r) -> Branch(p,b,mapf f l,mapf f r) in
  mapf;;

(* ------------------------------------------------------------------------- *)
(* Operations analogous to "fold" for lists.                                 *)
(* ------------------------------------------------------------------------- *)

let foldl =
  let rec foldl_list f a l =
    match l with
      [] -> a
    | (x,y)::t -> foldl_list f (f a x y) t in
  let rec foldl f a t =
    match t with
      Empty -> a
    | Leaf(h,l) -> foldl_list f a l
    | Branch(p,b,l,r) -> foldl f (foldl f a l) r in
  foldl;;

let foldr =
  let rec foldr_list f l a =
    match l with
      [] -> a
    | (x,y)::t -> f x y (foldr_list f t a) in
  let rec foldr f t a =
    match t with
      Empty -> a
    | Leaf(h,l) -> foldr_list f l a
    | Branch(p,b,l,r) -> foldr f l (foldr f r a) in
  foldr;;

(* ------------------------------------------------------------------------- *)
(* Redefinition and combination.                                             *)
(* ------------------------------------------------------------------------- *)

let (|->),combine =
  let ldb x y = let z = x lxor y in z land (-z) in
  let newbranch p1 t1 p2 t2 =
    let b = ldb p1 p2 in
    let p = p1 land (b - 1) in
    if p1 land b = 0 then Branch(p,b,t1,t2)
    else Branch(p,b,t2,t1) in
  let rec define_list (x,y as xy) l =
    match l with
      (a,b as ab)::t ->
          if x =? a then xy::t
          else if x <? a then xy::l
          else ab::(define_list xy t)
    | [] -> [xy]
  and combine_list op z l1 l2 =
    match (l1,l2) with
      [],_ -> l2
    | _,[] -> l1
    | ((x1,y1 as xy1)::t1,(x2,y2 as xy2)::t2) ->
          if x1 <? x2 then xy1::(combine_list op z t1 l2)
          else if x2 <? x1 then xy2::(combine_list op z l1 t2) else
          let y = op y1 y2 and l = combine_list op z t1 t2 in
          if z(y) then l else (x1,y)::l in
  let (|->) x y =
    let k = Hashtbl.hash x in
    let rec upd t =
      match t with
        Empty -> Leaf (k,[x,y])
      | Leaf(h,l) ->
           if h = k then Leaf(h,define_list (x,y) l)
           else newbranch h t k (Leaf(k,[x,y]))
      | Branch(p,b,l,r) ->
          if k land (b - 1) <> p then newbranch p t k (Leaf(k,[x,y]))
          else if k land b = 0 then Branch(p,b,upd l,r)
          else Branch(p,b,l,upd r) in
    upd in
  let rec combine op z t1 t2 =
    match (t1,t2) with
      Empty,_ -> t2
    | _,Empty -> t1
    | Leaf(h1,l1),Leaf(h2,l2) ->
          if h1 = h2 then
            let l = combine_list op z l1 l2 in
            if l = [] then Empty else Leaf(h1,l)
          else newbranch h1 t1 h2 t2
    | (Leaf(k,lis) as lf),(Branch(p,b,l,r) as br) |
      (Branch(p,b,l,r) as br),(Leaf(k,lis) as lf) ->
          if k land (b - 1) = p then
            if k land b = 0 then
              let l' = combine op z lf l in
              if is_undefined l' then r else Branch(p,b,l',r)
            else
              let r' = combine op z lf r in
              if is_undefined r' then l else Branch(p,b,l,r')
          else
            newbranch k lf p br
    | Branch(p1,b1,l1,r1),Branch(p2,b2,l2,r2) ->
          if b1 < b2 then
            if p2 land (b1 - 1) <> p1 then newbranch p1 t1 p2 t2
            else if p2 land b1 = 0 then
              let l = combine op z l1 t2 in
              if is_undefined l then r1 else Branch(p1,b1,l,r1)
            else
              let r = combine op z r1 t2 in
              if is_undefined r then l1 else Branch(p1,b1,l1,r)
          else if b2 < b1 then
            if p1 land (b2 - 1) <> p2 then newbranch p1 t1 p2 t2
            else if p1 land b2 = 0 then
              let l = combine op z t1 l2 in
              if is_undefined l then r2 else Branch(p2,b2,l,r2)
            else
              let r = combine op z t1 r2 in
              if is_undefined r then l2 else Branch(p2,b2,l2,r)
          else if p1 = p2 then
            let l = combine op z l1 l2 and r = combine op z r1 r2 in
            if is_undefined l then r
            else if is_undefined r then l else Branch(p1,b1,l,r)
          else
            newbranch p1 t1 p2 t2 in
  (|->),combine;;

(* ------------------------------------------------------------------------- *)
(* Special case of point function.                                           *)
(* ------------------------------------------------------------------------- *)

let (|=>) = fun x y -> (x |-> y) undefined;;


(* ------------------------------------------------------------------------- *)
(* Grab an arbitrary element.                                                *)
(* ------------------------------------------------------------------------- *)

let rec choose t =
  match t with
    Empty -> failwith "choose: completely undefined function"
  | Leaf(h,l) -> List.hd l
  | Branch(b,p,t1,t2) -> choose t1;;

(* ------------------------------------------------------------------------- *)
(* Application.                                                              *)
(* ------------------------------------------------------------------------- *)

let applyd =
  let rec apply_listd l d x =
    match l with
      (a,b)::t -> if x =? a then b
                  else if x >? a then apply_listd t d x else d x
    | [] -> d x in
  fun f d x ->
    let k = Hashtbl.hash x in
    let rec look t =
      match t with
        Leaf(h,l) when h = k -> apply_listd l d x
      | Branch(p,b,l,r) -> look (if k land b = 0 then l else r)
      | _ -> d x in
    look f;;

let apply f = applyd f (fun x -> failwith "apply");;

let tryapplyd f a d = applyd f (fun x -> d) a;;

(* ------------------------------------------------------------------------- *)
(* Undefinition.                                                             *)
(* ------------------------------------------------------------------------- *)

let undefine =
  let rec undefine_list x l =
    match l with
      (a,b as ab)::t ->
          if x =? a then t
          else if x <? a then l else
          let t' = undefine_list x t in
          if t' == t then l else ab::t'
    | [] -> [] in
  fun x ->
    let k = Hashtbl.hash x in
    let rec und t =
      match t with
        Leaf(h,l) when h = k ->
          let l' = undefine_list x l in
          if l' == l then t
          else if l' = [] then Empty
          else Leaf(h,l')
      | Branch(p,b,l,r) when k land (b - 1) = p ->
          if k land b = 0 then
            let l' = und l in
            if l' == l then t
            else if is_undefined l' then r
            else Branch(p,b,l',r)
          else
            let r' = und r in
            if r' == r then t
            else if is_undefined r' then l
            else Branch(p,b,l,r')
      | _ -> t in
    und;;


(* ------------------------------------------------------------------------- *)
(* Mapping to sorted-list representation of the graph, domain and range.     *)
(* ------------------------------------------------------------------------- *)

let graph f = setify (foldl (fun a x y -> (x,y)::a) [] f);;

let dom f = setify(foldl (fun a x y -> x::a) [] f);;

(* ------------------------------------------------------------------------- *)
(* More parser basics.                                                       *)
(* ------------------------------------------------------------------------- *)

exception Noparse;;


let isspace,isnum =
  let charcode s = Char.code(String.get s 0) in
  let spaces = " \t\n\r"
  and separators = ",;"
  and brackets = "()[]{}"
  and symbs = "\\!@#$%^&*-+|\\<=>/?~.:"
  and alphas = "'abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  and nums = "0123456789" in
  let allchars = spaces^separators^brackets^symbs^alphas^nums in
  let csetsize = List.fold_right ((o) max charcode) (explode allchars) 256 in
  let ctable = Array.make csetsize 0 in
  do_list (fun c -> Array.set ctable (charcode c) 1) (explode spaces);
  do_list (fun c -> Array.set ctable (charcode c) 2) (explode separators);
  do_list (fun c -> Array.set ctable (charcode c) 4) (explode brackets);
  do_list (fun c -> Array.set ctable (charcode c) 8) (explode symbs);
  do_list (fun c -> Array.set ctable (charcode c) 16) (explode alphas);
  do_list (fun c -> Array.set ctable (charcode c) 32) (explode nums);
  let isspace c = Array.get ctable (charcode c) = 1
  and isnum c = Array.get ctable (charcode c) = 32 in
  isspace,isnum;;

let parser_or parser1 parser2 input =
  try parser1 input
  with Noparse -> parser2 input;;

let (++) parser1 parser2 input =
  let result1,rest1 = parser1 input in
  let result2,rest2 = parser2 rest1 in
  (result1,result2),rest2;;

let rec many prs input =
  try let result,next = prs input in
      let results,rest = many prs next in
      (result::results),rest
  with Noparse -> [],input;;

let (>>) prs treatment input =
  let result,rest = prs input in
  treatment(result),rest;;

let fix err prs input =
  try prs input
  with Noparse -> failwith (err ^ " expected");;

let listof prs sep err =
  prs ++ many (sep ++ fix err prs >> snd) >> (fun (h,t) -> h::t);;

let possibly prs input =
  try let x,rest = prs input in [x],rest
  with Noparse -> [],input;;

let some p =
  function
      [] -> raise Noparse
    | (h::t) -> if p h then (h,t) else raise Noparse;;

let a tok = some (fun item -> item = tok);;

let rec atleast n prs i =
  (if n <= 0 then many prs
   else prs ++ atleast (n - 1) prs >> (fun (h,t) -> h::t)) i;;

(* ------------------------------------------------------------------------- *)

let temp_path = Filename.get_temp_dir_name ();;

(* ------------------------------------------------------------------------- *)
(* Convenient conversion between files and (lists of) strings.               *)
(* ------------------------------------------------------------------------- *)

let strings_of_file filename =
  let fd = try Pervasives.open_in filename
           with Sys_error _ ->
             failwith("strings_of_file: can't open "^filename) in
  let rec suck_lines acc =
    try let l = Pervasives.input_line fd in
        suck_lines (l::acc)
    with End_of_file -> List.rev acc in
  let data = suck_lines [] in
  (Pervasives.close_in fd; data);;

let string_of_file filename =
  String.concat "\n" (strings_of_file filename);;

let file_of_string filename s =
  let fd = Pervasives.open_out filename in
  output_string fd s; close_out fd;;


(* ------------------------------------------------------------------------- *)
(* Iterative deepening.                                                      *)
(* ------------------------------------------------------------------------- *)

let rec deepen f n =
  try (*print_string "Searching with depth limit ";
      print_int n; print_newline();*)

  with Failure _ -> deepen f (n + 1);;

exception TooDeep

let deepen_until limit f n =
  match compare limit 0 with
    | 0 -> raise TooDeep
    | -1 -> deepen f n
    | _  ->
 let rec d_until  f n =
   try(* if !debugging
  then (print_string "Searching with depth limit ";
print_int n; print_newline()) ;*)

   with Failure x ->
     (*if !debugging then (Printf.printf "solver error : %s\n" x) ; *)
     if n = limit then raise TooDeep else  d_until f (n + 1) in
   d_until f n

¤ Dauer der Verarbeitung: 0.60 Sekunden  (vorverarbeitet)  ¤





zum Wurzelverzeichnis wechseln
Diese Quellcodebibliothek enthält Beispiele in vielen Programmiersprachen. Man kann per Verzeichnistruktur darin navigieren. Der Code wird farblich markiert angezeigt.
zum Wurzelverzeichnis wechseln
sprechenden Kalenders

in der Quellcodebibliothek suchen




Laden

Fehler beim Verzeichnis:


in der Quellcodebibliothek suchen

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff



                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....
    

Besucherstatistik

Besucherstatistik