(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Pp
open CErrors
open Util
open Names
open Constr
open Context
open Libnames
open Globnames
open Termops
open Environ
open EConstr
open Vars
open Find_subterm
open Namegen
open CClosure
open Reductionops
open Cbv
open Patternops
open Locus
module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration
(* Errors *)
type reduction_tactic_error =
InvalidAbstraction of env * Evd.evar_map * EConstr.constr * (env * Type_errors.type_error)
exception ReductionTacticError of reduction_tactic_error
(* Evaluable reference *)
exception Elimconst
exception Redelimination
let error_not_evaluable r =
user_err ~hdr:"error_not_evaluable"
(str "Cannot coerce" ++ spc () ++ Nametab.pr_global_env Id.Set.empty r ++
spc () ++ str "to an evaluable reference.")
let is_evaluable_const env cst =
is_transparent env (ConstKey cst) &&
(evaluable_constant cst env || is_primitive env cst)
let is_evaluable_var env id =
is_transparent env (VarKey id) && evaluable_named id env
let is_evaluable env = function
| EvalConstRef cst -> is_evaluable_const env cst
| EvalVarRef id -> is_evaluable_var env id
let value_of_evaluable_ref env evref u =
match evref with
| EvalConstRef con ->
let u = Unsafe.to_instance u in
EConstr.of_constr (constant_value_in env (con, u))
| EvalVarRef id -> env |> lookup_named id |> NamedDecl.get_value |> Option.get
let evaluable_of_global_reference env = function
| ConstRef cst when is_evaluable_const env cst -> EvalConstRef cst
| VarRef id when is_evaluable_var env id -> EvalVarRef id
| r -> error_not_evaluable r
let global_of_evaluable_reference = function
| EvalConstRef cst -> ConstRef cst
| EvalVarRef id -> VarRef id
type evaluable_reference =
| EvalConst of Constant.t
| EvalVar of Id.t
| EvalRel of int
| EvalEvar of EConstr.existential
let evaluable_reference_eq sigma r1 r2 = match r1, r2 with
| EvalConst c1, EvalConst c2 -> Constant.equal c1 c2
| EvalVar id1, EvalVar id2 -> Id.equal id1 id2
| EvalRel i1, EvalRel i2 -> Int.equal i1 i2
| EvalEvar (e1, ctx1), EvalEvar (e2, ctx2) ->
Evar.equal e1 e2 && Array.equal (EConstr.eq_constr sigma) ctx1 ctx2
| _ -> false
let mkEvalRef ref u =
match ref with
| EvalConst cst -> mkConstU (cst,u)
| EvalVar id -> mkVar id
| EvalRel n -> mkRel n
| EvalEvar ev -> EConstr.mkEvar ev
let isEvalRef env sigma c = match EConstr.kind sigma c with
| Const (sp,_) -> is_evaluable env (EvalConstRef sp)
| Var id -> is_evaluable env (EvalVarRef id)
| Rel _ | Evar _ -> true
| _ -> false
let destEvalRefU sigma c = match EConstr.kind sigma c with
| Const (cst,u) -> EvalConst cst, u
| Var id -> (EvalVar id, EInstance.empty)
| Rel n -> (EvalRel n, EInstance.empty)
| Evar ev -> (EvalEvar ev, EInstance.empty)
| _ -> anomaly (Pp.str "Not an unfoldable reference.")
let unsafe_reference_opt_value env sigma eval =
match eval with
| EvalConst cst ->
(match (lookup_constant cst env).Declarations.const_body with
| Declarations.Def c -> Some (EConstr.of_constr (Mod_subst.force_constr c))
| _ -> None)
| EvalVar id ->
env |> lookup_named id |> NamedDecl.get_value
| EvalRel n ->
env |> lookup_rel n |> RelDecl.get_value |> Option.map (lift n)
| EvalEvar ev ->
match EConstr.kind sigma (mkEvar ev) with
| Evar _ -> None
| c -> Some (EConstr.of_kind c)
let reference_opt_value env sigma eval u =
match eval with
| EvalConst cst ->
let u = EInstance.kind sigma u in
Option.map EConstr.of_constr (constant_opt_value_in env (cst,u))
| EvalVar id ->
env |> lookup_named id |> NamedDecl.get_value
| EvalRel n ->
env |> lookup_rel n |> RelDecl.get_value |> Option.map (lift n)
| EvalEvar ev ->
match EConstr.kind sigma (mkEvar ev) with
| Evar _ -> None
| c -> Some (EConstr.of_kind c)
exception NotEvaluable
let reference_value env sigma c u =
match reference_opt_value env sigma c u with
| None -> raise NotEvaluable
| Some d -> d
(************************************************************************)
(* Reduction of constants hiding a fixpoint (e.g. for "simpl" tactic). *)
(* One reuses the name of the function after reduction of the fixpoint *)
type constant_evaluation =
| EliminationFix of int * int * (int * (int * constr) list * int)
| EliminationMutualFix of
int * evaluable_reference *
((int*evaluable_reference) option array *
(int * (int * constr) list * int))
| EliminationCases of int
| EliminationProj of int
| NotAnElimination
(* We use a cache registered as a global table *)
type frozen = constant_evaluation Cmap.t
let eval_table = Summary.ref (Cmap.empty : frozen) ~name:"evaluation"
(* [compute_consteval] determines whether c is an "elimination constant"
either [yn:Tn]..[y1:T1](match yi with f1..fk end g1 ..gp)
or [yn:Tn]..[y1:T1](Fix(f|t) yi1..yip)
with yi1..yip distinct variables among the yi, not occurring in t
In the second case, [check_fix_reversibility [T1;...;Tn] args fix]
checks that [args] is a subset of disjoint variables in y1..yn (a necessary
condition for reversibility). It also returns the relevant
information ([i1,Ti1;..;ip,Tip],n) in order to compute an
equivalent of Fix(f|t) such that
g := [xp:Tip']..[x1:Ti1'](f a1..an)
== [xp:Tip']..[x1:Ti1'](Fix(f|t) yi1..yip)
with a_k:=y_k if k<>i_j, a_k:=args_k otherwise, and
Tij':=Tij[x1..xi(j-1) <- a1..ai(j-1)]
Note that the types Tk, when no i_j=k, must not be dependent on
the xp..x1.
*)
let check_fix_reversibility sigma labs args ((lv,i),(_,tys,bds)) =
let n = List.length labs in
let nargs = List.length args in
if nargs > n then raise Elimconst;
let nbfix = Array.length bds in
let li =
List.map
(function d -> match EConstr.kind sigma d with
| Rel k ->
if
Array.for_all (Vars.noccurn sigma k) tys
&& Array.for_all (Vars.noccurn sigma (k+nbfix)) bds
&& k <= n
then
(k, List.nth labs (k-1))
else
raise Elimconst
| _ ->
raise Elimconst) args
in
let reversible_rels = List.map fst li in
if not (List.distinct_f Int.compare reversible_rels) then
raise Elimconst;
List.iteri (fun i t_i ->
if not (Int.List.mem_assoc (i+1) li) then
let fvs = List.map ((+) (i+1)) (Int.Set.elements (free_rels sigma t_i)) in
match List.intersect Int.equal fvs reversible_rels with
| [] -> ()
| _ -> raise Elimconst)
labs;
let k = lv.(i) in
if k < nargs then
(* Such an optimisation would need eta-expansion
let p = destRel (List.nth args k) in
EliminationFix (n-p+1,(nbfix,li,n))
*)
EliminationFix (n,nargs,(nbfix,li,n))
else
EliminationFix (n-nargs+k+1,nargs,(nbfix,li,n))
(* Heuristic to look if global names are associated to other
components of a mutual fixpoint *)
let invert_name labs l {binder_name=na0} env sigma ref na =
match na.binder_name with
| Name id ->
let minfxargs = List.length l in
begin match na0 with
| Name id' when Id.equal id' id ->
Some (minfxargs,ref)
| _ ->
let refi = match ref with
| EvalRel _ | EvalEvar _ -> None
| EvalVar id' -> Some (EvalVar id)
| EvalConst kn ->
Some (EvalConst (Constant.change_label kn (Label.of_id id))) in
match refi with
| None -> None
| Some ref ->
try match unsafe_reference_opt_value env sigma ref with
| None -> None
| Some c ->
let labs',ccl = decompose_lam sigma c in
let _, l' = whd_betalet_stack sigma ccl in
let labs' = List.map snd labs' in
(* ppedrot: there used to be generic equality on terms here *)
let eq_constr c1 c2 = EConstr.eq_constr sigma c1 c2 in
if List.equal eq_constr labs' labs &&
List.equal eq_constr l l' then Some (minfxargs,ref)
else None
with Not_found (* Undefined ref *) -> None
end
| Anonymous -> None (* Actually, should not occur *)
(* [compute_consteval_direct] expand all constant in a whole, but
[compute_consteval_mutual_fix] only one by one, until finding the
last one before the Fix if the latter is mutually defined *)
let compute_consteval_direct env sigma ref =
let rec srec env n labs onlyproj c =
let c',l = whd_betadeltazeta_stack env sigma c in
match EConstr.kind sigma c' with
| Lambda (id,t,g) when List.is_empty l && not onlyproj ->
let open Context.Rel.Declaration in
srec (push_rel (LocalAssum (id,t)) env) (n+1) (t::labs) onlyproj g
| Fix fix when not onlyproj ->
(try check_fix_reversibility sigma labs l fix
with Elimconst -> NotAnElimination)
| Case (_,_,d,_) when isRel sigma d && not onlyproj -> EliminationCases n
| Case (_,_,d,_) -> srec env n labs true d
| Proj (p, d) when isRel sigma d -> EliminationProj n
| _ -> NotAnElimination
in
match unsafe_reference_opt_value env sigma ref with
| None -> NotAnElimination
| Some c -> srec env 0 [] false c
let compute_consteval_mutual_fix env sigma ref =
let rec srec env minarg labs ref c =
let c',l = whd_betalet_stack sigma c in
let nargs = List.length l in
match EConstr.kind sigma c' with
| Lambda (na,t,g) when List.is_empty l ->
let open Context.Rel.Declaration in
srec (push_rel (LocalAssum (na,t)) env) (minarg+1) (t::labs) ref g
| Fix ((lv,i),(names,_,_)) ->
(* Last known constant wrapping Fix is ref = [labs](Fix l) *)
(match compute_consteval_direct env sigma ref with
| NotAnElimination -> (*Above const was eliminable but this not!*)
NotAnElimination
| EliminationFix (minarg',minfxargs,infos) ->
let refs =
Array.map
(invert_name labs l names.(i) env sigma ref) names in
let new_minarg = max (minarg'+minarg-nargs) minarg' in
EliminationMutualFix (new_minarg,ref,(refs,infos))
| _ -> assert false)
| _ when isEvalRef env sigma c' ->
(* Forget all \'s and args and do as if we had started with c' *)
let ref,_ = destEvalRefU sigma c' in
(match unsafe_reference_opt_value env sigma ref with
| None -> anomaly (Pp.str "Should have been trapped by compute_direct.")
| Some c -> srec env (minarg-nargs) [] ref c)
| _ -> (* Should not occur *) NotAnElimination
in
match unsafe_reference_opt_value env sigma ref with
| None -> (* Should not occur *) NotAnElimination
| Some c -> srec env 0 [] ref c
let compute_consteval env sigma ref =
match compute_consteval_direct env sigma ref with
| EliminationFix (_,_,(nbfix,_,_)) when not (Int.equal nbfix 1) ->
compute_consteval_mutual_fix env sigma ref
| elim -> elim
let reference_eval env sigma = function
| EvalConst cst as ref ->
(try
Cmap.find cst !eval_table
with Not_found -> begin
let v = compute_consteval env sigma ref in
eval_table := Cmap.add cst v !eval_table;
v
end)
| ref -> compute_consteval env sigma ref
(* If f is bound to EliminationFix (n',infos), then n' is the minimal
number of args for starting the reduction and infos is
(nbfix,[(yi1,Ti1);...;(yip,Tip)],n) indicating that f converts
to some [y1:T1,...,yn:Tn](Fix(..) yip .. yi1) where the y_{i_j} consist in a
disjoint subset of the yi, i.e. 1 <= ij <= n and the ij are disjoint (in
particular, p <= n).
f is applied to largs := arg1 .. argn and we need for recursive
calls to build the function
g := [xp:Tip',...,x1:Ti1'](f a1 ... an)
s.t. (g u1 ... up) reduces to (Fix(..) u1 ... up)
This is made possible by setting
a_k:=x_j if k=i_j for some j
a_k:=arg_k otherwise
The type Tij' is Tij[yi(j-1)..y1 <- ai(j-1)..a1]
*)
let x = Name default_dependent_ident
let make_elim_fun (names,(nbfix,lv,n)) u largs =
let lu = List.firstn n largs in
let p = List.length lv in
let lyi = List.map fst lv in
let la =
List.map_i (fun q aq ->
(* k from the comment is q+1 *)
try mkRel (p+1-(List.index Int.equal (n-q) lyi))
with Not_found -> aq)
0 (List.map (Vars.lift p) lu)
in
fun i ->
match names.(i) with
| None -> None
| Some (minargs,ref) ->
let body = applist (mkEvalRef ref u, la) in
let g =
List.fold_left_i (fun q (* j = n+1-q *) c (ij,tij) ->
let subst = List.map (Vars.lift (-q)) (List.firstn (n-ij) la) in
let tij' = Vars.substl (List.rev subst) tij in
let x = make_annot x Sorts.Relevant in (* TODO relevance *)
mkLambda (x,tij',c)) 1 body (List.rev lv)
in Some (minargs,g)
(* [f] is convertible to [Fix(recindices,bodynum),bodyvect)]:
do so that the reduction uses this extra information *)
let dummy = mkProp
let vfx = Id.of_string "_expanded_fix_"
let vfun = Id.of_string "_eliminator_function_"
let venv = let open Context.Named.Declaration in
val_of_named_context [LocalAssum (make_annot vfx Sorts.Relevant, dummy);
LocalAssum (make_annot vfun Sorts.Relevant, dummy)]
(* Mark every occurrence of substituted vars (associated to a function)
as a problem variable: an evar that can be instantiated either by
vfx (expanded fixpoint) or vfun (named function). *)
let substl_with_function subst sigma constr =
let evd = ref sigma in
let minargs = ref Evar.Map.empty in
let v = Array.of_list subst in
let rec subst_total k c = match EConstr.kind sigma c with
| Rel i when k < i ->
if i <= k + Array.length v then
match v.(i-k-1) with
| (fx, Some (min, ref)) ->
let sigma = !evd in
let (sigma, evk) = Evarutil.new_pure_evar venv sigma dummy in
evd := sigma;
minargs := Evar.Map.add evk min !minargs;
Vars.lift k (mkEvar (evk, [|fx;ref|]))
| (fx, None) -> Vars.lift k fx
else mkRel (i - Array.length v)
| _ ->
map_with_binders sigma succ subst_total k c in
let c = subst_total 0 constr in
(c, !evd, !minargs)
exception Partial
(* each problem variable that cannot be made totally applied even by
reduction is solved by the expanded fix term. *)
let solve_arity_problem env sigma fxminargs c =
let evm = ref sigma in
let set_fix i = evm := Evd.define i (mkVar vfx) !evm in
let rec check strict c =
let c' = whd_betaiotazeta sigma c in
let (h,rcargs) = decompose_app_vect sigma c' in
match EConstr.kind sigma h with
Evar(i,_) when Evar.Map.mem i fxminargs && not (Evd.is_defined !evm i) ->
let minargs = Evar.Map.find i fxminargs in
if Array.length rcargs < minargs then
if strict then set_fix i
else raise Partial;
Array.iter (check strict) rcargs
| (Var _|Const _) when isEvalRef env sigma h ->
(let ev, u = destEvalRefU sigma h in
match reference_opt_value env sigma ev u with
| Some h' ->
let bak = !evm in
(try Array.iter (check false) rcargs
with Partial ->
evm := bak;
check strict (mkApp(h',rcargs)))
| None -> Array.iter (check strict) rcargs)
| _ -> EConstr.iter sigma (check strict) c' in
check true c;
!evm
let substl_checking_arity env subst sigma c =
(* we initialize the problem: *)
let body,sigma,minargs = substl_with_function subst sigma c in
(* we collect arity constraints *)
let sigma' = solve_arity_problem env sigma minargs body in
(* we propagate the constraints: solved problems are substituted;
the other ones are replaced by the function symbol *)
let rec nf_fix c = match EConstr.kind sigma c with
| Evar (i,[|fx;f|]) when Evar.Map.mem i minargs ->
(* FIXME: find a less hackish way of doing this *)
begin match EConstr.kind sigma' c with
| Evar _ -> f
| c -> EConstr.of_kind c
end
| _ -> EConstr.map sigma nf_fix c
in
nf_fix body
type fix_reduction_result = NotReducible | Reduced of (constr * constr list)
let reduce_fix whdfun sigma fix stack =
match fix_recarg fix (Stack.append_app_list stack Stack.empty) with
| None -> NotReducible
| Some (recargnum,recarg) ->
let (recarg'hd,_ as recarg') = whdfun sigma recarg in
let stack' = List.assign stack recargnum (applist recarg') in
(match EConstr.kind sigma recarg'hd with
| Construct _ -> Reduced (contract_fix sigma fix, stack')
| _ -> NotReducible)
let contract_fix_use_function env sigma f
((recindices,bodynum),(_names,_types,bodies as typedbodies)) =
let nbodies = Array.length recindices in
let make_Fi j = (mkFix((recindices,j),typedbodies), f j) in
let lbodies = List.init nbodies make_Fi in
substl_checking_arity env (List.rev lbodies) sigma (nf_beta env sigma bodies.(bodynum))
let reduce_fix_use_function env sigma f whfun fix stack =
match fix_recarg fix (Stack.append_app_list stack Stack.empty) with
| None -> NotReducible
| Some (recargnum,recarg) ->
let (recarg'hd,_ as recarg') =
if EConstr.isRel sigma recarg then
(* The recarg cannot be a local def, no worry about the right env *)
(recarg, [])
else
whfun recarg in
let stack' = List.assign stack recargnum (applist recarg') in
(match EConstr.kind sigma recarg'hd with
| Construct _ ->
Reduced (contract_fix_use_function env sigma f fix,stack')
| _ -> NotReducible)
let contract_cofix_use_function env sigma f
(bodynum,(_names,_,bodies as typedbodies)) =
let nbodies = Array.length bodies in
let make_Fi j = (mkCoFix(j,typedbodies), f j) in
let subbodies = List.init nbodies make_Fi in
substl_checking_arity env (List.rev subbodies)
sigma (nf_beta env sigma bodies.(bodynum))
let reduce_mind_case_use_function func env sigma mia =
match EConstr.kind sigma mia.mconstr with
| Construct ((ind_sp,i),u) ->
let real_cargs = List.skipn mia.mci.ci_npar mia.mcargs in
applist (mia.mlf.(i-1), real_cargs)
| CoFix (bodynum,(names,_,_) as cofix) ->
let build_cofix_name =
if isConst sigma func then
let minargs = List.length mia.mcargs in
fun i ->
if Int.equal i bodynum then Some (minargs,func)
else match names.(i).binder_name with
| Anonymous -> None
| Name id ->
(* In case of a call to another component of a block of
mutual inductive, try to reuse the global name if
the block was indeed initially built as a global
definition *)
let (kn, u) = destConst sigma func in
let kn = Constant.change_label kn (Label.of_id id) in
let cst = (kn, EInstance.kind sigma u) in
try match constant_opt_value_in env cst with
| None -> None
(* TODO: check kn is correct *)
| Some _ -> Some (minargs,mkConstU (kn, u))
with Not_found -> None
else
fun _ -> None in
let cofix_def =
contract_cofix_use_function env sigma build_cofix_name cofix in
mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
| _ -> assert false
let match_eval_ref env sigma constr stack =
match EConstr.kind sigma constr with
| Const (sp, u) ->
reduction_effect_hook env sigma sp
(lazy (EConstr.to_constr sigma (applist (constr,stack))));
if is_evaluable env (EvalConstRef sp) then Some (EvalConst sp, u) else None
| Var id when is_evaluable env (EvalVarRef id) -> Some (EvalVar id, EInstance.empty)
| Rel i -> Some (EvalRel i, EInstance.empty)
| Evar ev -> Some (EvalEvar ev, EInstance.empty)
| _ -> None
let match_eval_ref_value env sigma constr stack =
match EConstr.kind sigma constr with
| Const (sp, u) ->
reduction_effect_hook env sigma sp
(lazy (EConstr.to_constr sigma (applist (constr,stack))));
if is_evaluable env (EvalConstRef sp) then
let u = EInstance.kind sigma u in
Some (EConstr.of_constr (constant_value_in env (sp, u)))
else
None
| Proj (p, c) when not (Projection.unfolded p) ->
if is_evaluable env (EvalConstRef (Projection.constant p)) then
Some (mkProj (Projection.unfold p, c))
else None
| Var id when is_evaluable env (EvalVarRef id) ->
env |> lookup_named id |> NamedDecl.get_value
| Rel n ->
env |> lookup_rel n |> RelDecl.get_value |> Option.map (lift n)
| _ -> None
let special_red_case env sigma whfun (ci, p, c, lf) =
let rec redrec s =
let (constr, cargs) = whfun s in
match match_eval_ref env sigma constr cargs with
| Some (ref, u) ->
(match reference_opt_value env sigma ref u with
| None -> raise Redelimination
| Some gvalue ->
if reducible_mind_case sigma gvalue then
reduce_mind_case_use_function constr env sigma
{mP=p; mconstr=gvalue; mcargs=cargs;
mci=ci; mlf=lf}
else
redrec (applist(gvalue, cargs)))
| None ->
if reducible_mind_case sigma constr then
reduce_mind_case sigma
{mP=p; mconstr=constr; mcargs=cargs;
mci=ci; mlf=lf}
else
raise Redelimination
in
redrec c
let recargs = function
| EvalVar _ | EvalRel _ | EvalEvar _ -> None
| EvalConst c -> ReductionBehaviour.get (ConstRef c)
let reduce_projection env sigma p ~npars (recarg'hd,stack') stack =
(match EConstr.kind sigma recarg'hd with
| Construct _ ->
let proj_narg = npars + Projection.arg p in
Reduced (List.nth stack' proj_narg, stack)
| _ -> NotReducible)
let reduce_proj env sigma whfun whfun' c =
let rec redrec s =
match EConstr.kind sigma s with
| Proj (proj, c) ->
let c' = try redrec c with Redelimination -> c in
let constr, cargs = whfun c' in
(match EConstr.kind sigma constr with
| Construct _ ->
let proj_narg = Projection.npars proj + Projection.arg proj in
List.nth cargs proj_narg
| _ -> raise Redelimination)
| Case (n,p,c,brs) ->
let c' = redrec c in
let p = (n,p,c',brs) in
(try special_red_case env sigma whfun' p
with Redelimination -> mkCase p)
| _ -> raise Redelimination
in redrec c
let whd_nothing_for_iota env sigma s =
let rec whrec (x, stack as s) =
match EConstr.kind sigma x with
| Rel n ->
let open Context.Rel.Declaration in
(match lookup_rel n env with
| LocalDef (_,body,_) -> whrec (lift n body, stack)
| _ -> s)
| Var id ->
let open Context.Named.Declaration in
(match lookup_named id env with
| LocalDef (_,body,_) -> whrec (body, stack)
| _ -> s)
| Evar ev -> s
| Meta ev ->
(try whrec (Evd.meta_value sigma ev, stack)
with Not_found -> s)
| Const (const, u) ->
let u = EInstance.kind sigma u in
(match constant_opt_value_in env (const, u) with
| Some body -> whrec (EConstr.of_constr body, stack)
| None -> s)
| LetIn (_,b,_,c) -> stacklam whrec [b] sigma c stack
| Cast (c,_,_) -> whrec (c, stack)
| App (f,cl) -> whrec (f, Stack.append_app cl stack)
| Lambda (na,t,c) ->
(match Stack.decomp stack with
| Some (a,m) -> stacklam whrec [a] sigma c m
| _ -> s)
| x -> s
in
EConstr.decompose_app sigma (Stack.zip sigma (whrec (s,Stack.empty)))
(* [red_elim_const] contracts iota/fix/cofix redexes hidden behind
constants by keeping the name of the constants in the recursive calls;
it fails if no redex is around *)
let rec red_elim_const env sigma ref u largs =
let nargs = List.length largs in
let largs, unfold_anyway, unfold_nonelim, nocase =
match recargs ref with
| None -> largs, false, false, false
| Some (_,n,f) when nargs < n || List.mem `ReductionNeverUnfold f -> raise Redelimination
| Some (x::l,_,_) when nargs <= List.fold_left max x l -> raise Redelimination
| Some (l,n,f) ->
let is_empty = match l with [] -> true | _ -> false in
reduce_params env sigma largs l,
n >= 0 && is_empty && nargs >= n,
n >= 0 && not is_empty && nargs >= n,
List.mem `ReductionDontExposeCase f
in
try match reference_eval env sigma ref with
| EliminationCases n when nargs >= n ->
let c = reference_value env sigma ref u in
let c', lrest = whd_nothing_for_iota env sigma (applist(c,largs)) in
let whfun = whd_simpl_stack env sigma in
(special_red_case env sigma whfun (EConstr.destCase sigma c'), lrest), nocase
| EliminationProj n when nargs >= n ->
let c = reference_value env sigma ref u in
let c', lrest = whd_nothing_for_iota env sigma (applist(c,largs)) in
let whfun = whd_construct_stack env sigma in
let whfun' = whd_simpl_stack env sigma in
(reduce_proj env sigma whfun whfun' c', lrest), nocase
| EliminationFix (min,minfxargs,infos) when nargs >= min ->
let c = reference_value env sigma ref u in
let d, lrest = whd_nothing_for_iota env sigma (applist(c,largs)) in
let f = make_elim_fun ([|Some (minfxargs,ref)|],infos) u largs in
let whfun = whd_construct_stack env sigma in
(match reduce_fix_use_function env sigma f whfun (destFix sigma d) lrest with
| NotReducible -> raise Redelimination
| Reduced (c,rest) -> (nf_beta env sigma c, rest), nocase)
| EliminationMutualFix (min,refgoal,refinfos) when nargs >= min ->
let rec descend (ref,u) args =
let c = reference_value env sigma ref u in
if evaluable_reference_eq sigma ref refgoal then
(c,args)
else
let c', lrest = whd_betalet_stack sigma (applist(c,args)) in
descend (destEvalRefU sigma c') lrest in
let (_, midargs as s) = descend (ref,u) largs in
let d, lrest = whd_nothing_for_iota env sigma (applist s) in
let f = make_elim_fun refinfos u midargs in
let whfun = whd_construct_stack env sigma in
(match reduce_fix_use_function env sigma f whfun (destFix sigma d) lrest with
| NotReducible -> raise Redelimination
| Reduced (c,rest) -> (nf_beta env sigma c, rest), nocase)
| NotAnElimination when unfold_nonelim ->
let c = reference_value env sigma ref u in
(whd_betaiotazeta sigma (applist (c, largs)), []), nocase
| _ -> raise Redelimination
with Redelimination when unfold_anyway ->
let c = reference_value env sigma ref u in
(whd_betaiotazeta sigma (applist (c, largs)), []), nocase
and reduce_params env sigma stack l =
let len = List.length stack in
List.fold_left (fun stack i ->
if len <= i then raise Redelimination
else
let arg = List.nth stack i in
let rarg = whd_construct_stack env sigma arg in
match EConstr.kind sigma (fst rarg) with
| Construct _ -> List.assign stack i (applist rarg)
| _ -> raise Redelimination)
stack l
(* reduce to whd normal form or to an applied constant that does not hide
a reducible iota/fix/cofix redex (the "simpl" tactic) *)
and whd_simpl_stack env sigma =
let rec redrec s =
let (x, stack) = decompose_app_vect sigma s in
let stack = Array.to_list stack in
let s' = (x, stack) in
match EConstr.kind sigma x with
| Lambda (na,t,c) ->
(match stack with
| [] -> s'
| a :: rest -> redrec (beta_applist sigma (x, stack)))
| LetIn (n,b,t,c) -> redrec (applist (Vars.substl [b] c, stack))
| App (f,cl) -> redrec (applist(f, (Array.to_list cl)@stack))
| Cast (c,_,_) -> redrec (applist(c, stack))
| Case (ci,p,c,lf) ->
(try
redrec (applist(special_red_case env sigma redrec (ci,p,c,lf), stack))
with
Redelimination -> s')
| Fix fix ->
(try match reduce_fix (whd_construct_stack env) sigma fix stack with
| Reduced s' -> redrec (applist s')
| NotReducible -> s'
with Redelimination -> s')
| Proj (p, c) ->
(try
let unf = Projection.unfolded p in
if unf || is_evaluable env (EvalConstRef (Projection.constant p)) then
let npars = Projection.npars p in
(match unf, ReductionBehaviour.get (ConstRef (Projection.constant p)) with
| false, Some (l, n, f) when List.mem `ReductionNeverUnfold f ->
(* simpl never *) s'
| false, Some (l, n, f) when not (List.is_empty l) ->
let l' = List.map_filter (fun i ->
let idx = (i - (npars + 1)) in
if idx < 0 then None else Some idx) l in
let stack = reduce_params env sigma stack l' in
(match reduce_projection env sigma p ~npars
(whd_construct_stack env sigma c) stack
with
| Reduced s' -> redrec (applist s')
| NotReducible -> s')
| _ ->
match reduce_projection env sigma p ~npars (whd_construct_stack env sigma c) stack with
| Reduced s' -> redrec (applist s')
| NotReducible -> s')
else s'
with Redelimination -> s')
| _ ->
match match_eval_ref env sigma x stack with
| Some (ref, u) ->
(try
let sapp, nocase = red_elim_const env sigma ref u stack in
let hd, _ as s'' = redrec (applist(sapp)) in
let rec is_case x = match EConstr.kind sigma x with
| Lambda (_,_, x) | LetIn (_,_,_, x) | Cast (x, _,_) -> is_case x
| App (hd, _) -> is_case hd
| Case _ -> true
| _ -> false in
if nocase && is_case hd then raise Redelimination
else s''
with Redelimination -> s')
| None -> s'
in
redrec
(* reduce until finding an applied constructor or fail *)
and whd_construct_stack env sigma s =
let (constr, cargs as s') = whd_simpl_stack env sigma s in
if reducible_mind_case sigma constr then s'
else match match_eval_ref env sigma constr cargs with
| Some (ref, u) ->
(match reference_opt_value env sigma ref u with
| None -> raise Redelimination
| Some gvalue -> whd_construct_stack env sigma (applist(gvalue, cargs)))
| _ -> raise Redelimination
(************************************************************************)
(* Special Purpose Reduction Strategies *)
(* Red reduction tactic: one step of delta reduction + full
beta-iota-fix-cofix-zeta-cast at the head of the conclusion of a
sequence of products; fails if no delta redex is around
*)
let try_red_product env sigma c =
let simpfun c = clos_norm_flags betaiotazeta env sigma c in
let rec redrec env x =
let x = whd_betaiota sigma x in
match EConstr.kind sigma x with
| App (f,l) ->
(match EConstr.kind sigma f with
| Fix fix ->
let stack = Stack.append_app l Stack.empty in
(match fix_recarg fix stack with
| None -> raise Redelimination
| Some (recargnum,recarg) ->
let recarg' = redrec env recarg in
let stack' = Stack.assign stack recargnum recarg' in
simpfun (Stack.zip sigma (f,stack')))
| _ -> simpfun (mkApp (redrec env f, l)))
| Cast (c,_,_) -> redrec env c
| Prod (x,a,b) ->
let open Context.Rel.Declaration in
mkProd (x, a, redrec (push_rel (LocalAssum (x, a)) env) b)
| LetIn (x,a,b,t) -> redrec env (Vars.subst1 a t)
| Case (ci,p,d,lf) -> simpfun (mkCase (ci,p,redrec env d,lf))
| Proj (p, c) ->
let c' =
match EConstr.kind sigma c with
| Construct _ -> c
| _ -> redrec env c
in
let npars = Projection.npars p in
(match reduce_projection env sigma p ~npars (whd_betaiotazeta_stack sigma c') [] with
| Reduced s -> simpfun (applist s)
| NotReducible -> raise Redelimination)
| _ ->
(match match_eval_ref env sigma x [] with
| Some (ref, u) ->
(* TO DO: re-fold fixpoints after expansion *)
(* to get true one-step reductions *)
(match reference_opt_value env sigma ref u with
| None -> raise Redelimination
| Some c -> c)
| _ -> raise Redelimination)
in redrec env c
let red_product env sigma c =
try try_red_product env sigma c
with Redelimination -> user_err (str "No head constant to reduce.")
(*
(* This old version of hnf uses betadeltaiota instead of itself (resp
whd_construct_state) to reduce the argument of Case (resp Fix);
The new version uses the "simpl" strategy instead. For instance,
Variable n:nat.
Eval hnf in match (plus (S n) O) with S n => n | _ => O end.
returned
(fix plus (n m : nat) {struct n} : nat :=
match n with
| O => m
| S p => S (plus p m)
end) n 0
while the new version returns (plus n O)
*)
let whd_simpl_orelse_delta_but_fix_old env sigma c =
let whd_all = whd_all_state env sigma in
let rec redrec (x, stack as s) =
match kind_of_term x with
| Lambda (na,t,c) ->
(match decomp_stack stack with
| None -> s
| Some (a,rest) -> stacklam redrec [a] c rest)
| LetIn (n,b,t,c) -> stacklam redrec [b] c stack
| App (f,cl) -> redrec (f, append_stack cl stack)
| Cast (c,_,_) -> redrec (c, stack)
| Case (ci,p,d,lf) ->
(try
redrec (special_red_case env sigma whd_all (ci,p,d,lf), stack)
with Redelimination ->
s)
| Fix fix ->
(match reduce_fix whd_all fix stack with
| Reduced s' -> redrec s'
| NotReducible -> s)
| _ when isEvalRef env x ->
let ref = destEvalRef x in
(try
redrec (red_elim_const env sigma ref stack)
with Redelimination ->
match reference_opt_value env sigma ref with
| Some c ->
(match kind_of_term (strip_lam c) with
| CoFix _ | Fix _ -> s
| _ -> redrec (c, stack))
| None -> s)
| _ -> s
in app_stack (redrec (c, empty_stack))
*)
let whd_simpl_stack =
if Flags.profile then
let key = CProfile.declare_profile "whd_simpl_stack" in
CProfile.profile3 key whd_simpl_stack
else whd_simpl_stack
(* Same as [whd_simpl] but also reduces constants that do not hide a
reducible fix, but does this reduction of constants only until it
immediately hides a non reducible fix or a cofix *)
let whd_simpl_orelse_delta_but_fix env sigma c =
let rec redrec s =
let (constr, stack as s') = whd_simpl_stack env sigma s in
match match_eval_ref_value env sigma constr stack with
| Some c ->
(match EConstr.kind sigma (snd (decompose_lam sigma c)) with
| CoFix _ | Fix _ -> s'
| Proj (p,t) when
(match EConstr.kind sigma constr with
| Const (c', _) -> Constant.equal (Projection.constant p) c'
| _ -> false) ->
let npars = Projection.npars p in
if List.length stack <= npars then
(* Do not show the eta-expanded form *)
s'
else redrec (applist (c, stack))
| _ -> redrec (applist(c, stack)))
| None -> s'
in
let simpfun = clos_norm_flags betaiota env sigma in
simpfun (applist (redrec c))
let hnf_constr = whd_simpl_orelse_delta_but_fix
(* The "simpl" reduction tactic *)
let whd_simpl env sigma c =
applist (whd_simpl_stack env sigma c)
let simpl env sigma c = strong whd_simpl env sigma c
(* Reduction at specific subterms *)
let matches_head env sigma c t =
match EConstr.kind sigma t with
| App (f,_) -> Constr_matching.matches env sigma c f
| Proj (p, _) -> Constr_matching.matches env sigma c (mkConstU (Projection.constant p, EInstance.empty))
| _ -> raise Constr_matching.PatternMatchingFailure
(** FIXME: Specific function to handle projections: it ignores what happens on the
parameters. This is a temporary fix while rewrite etc... are not up to equivalence
of the projection and its eta expanded form.
*)
let change_map_constr_with_binders_left_to_right g f (env, l as acc) sigma c =
match EConstr.kind sigma c with
| Proj (p, r) -> (* Treat specially for partial applications *)
let t = Retyping.expand_projection env sigma p r [] in
let hdf, al = destApp sigma t in
let a = al.(Array.length al - 1) in
let app = (mkApp (hdf, Array.sub al 0 (Array.length al - 1))) in
let app' = f acc app in
let a' = f acc a in
(match EConstr.kind sigma app' with
| App (hdf', al') when hdf' == hdf ->
(* Still the same projection, we ignore the change in parameters *)
mkProj (p, a')
| _ -> mkApp (app', [| a' |]))
| _ -> map_constr_with_binders_left_to_right sigma g f acc c
let e_contextually byhead (occs,c) f = begin fun env sigma t ->
let (nowhere_except_in,locs) = Locusops.convert_occs occs in
let maxocc = List.fold_right max locs 0 in
let pos = ref 1 in
(* FIXME: we do suspicious things with this evarmap *)
let evd = ref sigma in
let rec traverse nested (env,c as envc) t =
if nowhere_except_in && (!pos > maxocc) then (* Shortcut *) t
else
try
let subst =
if byhead then matches_head env sigma c t
else Constr_matching.matches env sigma c t in
let ok =
if nowhere_except_in then Int.List.mem !pos locs
else not (Int.List.mem !pos locs) in
incr pos;
if ok then begin
if Option.has_some nested then
user_err (str "The subterm at occurrence " ++ int (Option.get nested) ++ str " overlaps with the subterm at occurrence " ++ int (!pos-1) ++ str ".");
(* Skip inner occurrences for stable counting of occurrences *)
if locs != [] then
ignore (traverse_below (Some (!pos-1)) envc t);
let (evm, t) = (f subst) env !evd t in
(evd := evm; t)
end
else
traverse_below nested envc t
with Constr_matching.PatternMatchingFailure ->
traverse_below nested envc t
and traverse_below nested envc t =
(* when byhead, find other occurrences without matching again partial
application with same head *)
match EConstr.kind !evd t with
| App (f,l) when byhead -> mkApp (f, Array.map_left (traverse nested envc) l)
| Proj (p,c) when byhead -> mkProj (p,traverse nested envc c)
| _ ->
change_map_constr_with_binders_left_to_right
(fun d (env,c) -> (push_rel d env,lift_pattern 1 c))
(traverse nested) envc sigma t
in
let t' = traverse None (env,c) t in
if List.exists (fun o -> o >= !pos) locs then error_invalid_occurrence locs;
(!evd, t')
end
let contextually byhead occs f env sigma t =
let f' subst env sigma t = sigma, f subst env sigma t in
snd (e_contextually byhead occs f' env sigma t)
(* linear bindings (following pretty-printer) of the value of name in c.
* n is the number of the next occurrence of name.
* ol is the occurrence list to find. *)
let match_constr_evaluable_ref sigma c evref =
match EConstr.kind sigma c, evref with
| Const (c,u), EvalConstRef c' when Constant.equal c c' -> Some u
| Var id, EvalVarRef id' when Id.equal id id' -> Some EInstance.empty
| _, _ -> None
let substlin env sigma evalref n (nowhere_except_in,locs) c =
let maxocc = List.fold_right max locs 0 in
let pos = ref n in
assert (List.for_all (fun x -> x >= 0) locs);
let value u = value_of_evaluable_ref env evalref u in
let rec substrec () c =
if nowhere_except_in && !pos > maxocc then c
else
match match_constr_evaluable_ref sigma c evalref with
| Some u ->
let ok =
if nowhere_except_in then Int.List.mem !pos locs
else not (Int.List.mem !pos locs) in
incr pos;
if ok then value u else c
| None ->
map_constr_with_binders_left_to_right sigma
(fun _ () -> ())
substrec () c
in
let t' = substrec () c in
(!pos, t')
let string_of_evaluable_ref env = function
| EvalVarRef id -> Id.to_string id
| EvalConstRef kn ->
string_of_qualid
(Nametab.shortest_qualid_of_global (vars_of_env env) (ConstRef kn))
let unfold env sigma name c =
if is_evaluable env name then
clos_norm_flags (unfold_red name) env sigma c
else
user_err Pp.(str (string_of_evaluable_ref env name^" is opaque."))
(* [unfoldoccs : (readable_constraints -> (int list * full_path) -> constr -> constr)]
* Unfolds the constant name in a term c following a list of occurrences occl.
* at the occurrences of occ_list. If occ_list is empty, unfold all occurrences.
* Performs a betaiota reduction after unfolding. *)
let unfoldoccs env sigma (occs,name) c =
let unfo nowhere_except_in locs =
let (nbocc,uc) = substlin env sigma name 1 (nowhere_except_in,locs) c in
if Int.equal nbocc 1 then
user_err Pp.(str ((string_of_evaluable_ref env name)^" does not occur."));
let rest = List.filter (fun o -> o >= nbocc) locs in
let () = match rest with
| [] -> ()
| _ -> error_invalid_occurrence rest
in
nf_betaiotazeta env sigma uc
in
match occs with
| NoOccurrences -> c
| AllOccurrences -> unfold env sigma name c
| OnlyOccurrences l -> unfo true l
| AllOccurrencesBut l -> unfo false l
| AtLeastOneOccurrence -> unfo false []
(* Unfold reduction tactic: *)
let unfoldn loccname env sigma c =
List.fold_left (fun c occname -> unfoldoccs env sigma occname c) c loccname
(* Re-folding constants tactics: refold com in term c *)
let fold_one_com com env sigma c =
let rcom =
try red_product env sigma com
with Redelimination -> user_err Pp.(str "Not reducible.") in
(* Reason first on the beta-iota-zeta normal form of the constant as
unfold produces it, so that the "unfold f; fold f" configuration works
to refold fix expressions *)
let a = subst_term sigma (clos_norm_flags unfold_side_red env sigma rcom) c in
if not (EConstr.eq_constr sigma a c) then
Vars.subst1 com a
else
(* Then reason on the non beta-iota-zeta form for compatibility -
even if it is probably a useless configuration *)
let a = subst_term sigma rcom c in
Vars.subst1 com a
let fold_commands cl env sigma c =
List.fold_right (fun com c -> fold_one_com com env sigma c) (List.rev cl) c
(* call by value reduction functions *)
let cbv_norm_flags flags env sigma t =
cbv_norm (create_cbv_infos flags env sigma) t
let cbv_beta = cbv_norm_flags beta
let cbv_betaiota = cbv_norm_flags betaiota
let cbv_betadeltaiota env sigma = cbv_norm_flags all env sigma
let compute = cbv_betadeltaiota
(* Pattern *)
(* gives [na:ta]c' such that c converts to ([na:ta]c' a), abstracting only
* the specified occurrences. *)
let abstract_scheme env sigma (locc,a) (c, sigma) =
let ta = Retyping.get_type_of env sigma a in
let na = named_hd env sigma ta Anonymous in
let na = make_annot na Sorts.Relevant in (* TODO relevance *)
if occur_meta sigma ta then user_err Pp.(str "Cannot find a type for the generalisation.");
if occur_meta sigma a then
mkLambda (na,ta,c), sigma
else
let c', sigma' = subst_closed_term_occ env sigma (AtOccs locc) a c in
mkLambda (na,ta,c'), sigma'
let pattern_occs loccs_trm = begin fun env sigma c ->
let abstr_trm, sigma = List.fold_right (abstract_scheme env sigma) loccs_trm (c,sigma) in
try
let _ = Typing.unsafe_type_of env sigma abstr_trm in
(sigma, applist(abstr_trm, List.map snd loccs_trm))
with Type_errors.TypeError (env',t) ->
raise (ReductionTacticError (InvalidAbstraction (env,sigma,abstr_trm,(env',t))))
end
(* Used in several tactics. *)
let check_privacy env ind =
let spec = Inductive.lookup_mind_specif env (fst ind) in
if Inductive.is_private spec then
user_err (str "case analysis on a private type.")
else ind
let check_not_primitive_record env ind =
let spec = Inductive.lookup_mind_specif env (fst ind) in
if Inductive.is_primitive_record spec then
user_err (str "case analysis on a primitive record type: " ++
str "use projections or let instead.")
else ind
(* put t as t'=(x1:A1)..(xn:An)B with B an inductive definition of name name
return name, B and t' *)
let reduce_to_ind_gen allow_product env sigma t =
let rec elimrec env t l =
let t = hnf_constr env sigma t in
match EConstr.kind sigma (fst (decompose_app_vect sigma t)) with
| Ind ind-> (check_privacy env ind, it_mkProd_or_LetIn t l)
| Prod (n,ty,t') ->
let open Context.Rel.Declaration in
if allow_product then
elimrec (push_rel (LocalAssum (n,ty)) env) t' ((LocalAssum (n,ty))::l)
else
user_err (str"Not an inductive definition.")
| _ ->
(* Last chance: we allow to bypass the Opaque flag (as it
was partially the case between V5.10 and V8.1 *)
let t' = whd_all env sigma t in
match EConstr.kind sigma (fst (decompose_app_vect sigma t')) with
| Ind ind-> (check_privacy env ind, it_mkProd_or_LetIn t' l)
| _ -> user_err (str"Not an inductive product.")
in
elimrec env t []
let reduce_to_quantified_ind env sigma c = reduce_to_ind_gen true env sigma c
let reduce_to_atomic_ind env sigma c = reduce_to_ind_gen false env sigma c
let find_hnf_rectype env sigma t =
let ind,t = reduce_to_atomic_ind env sigma t in
ind, snd (decompose_app sigma t)
(* Reduce the weak-head redex [beta,iota/fix/cofix[all],cast,zeta,simpl/delta]
or raise [NotStepReducible] if not a weak-head redex *)
exception NotStepReducible
let one_step_reduce env sigma c =
let rec redrec (x, stack) =
match EConstr.kind sigma x with
| Lambda (n,t,c) ->
(match stack with
| [] -> raise NotStepReducible
| a :: rest -> (Vars.subst1 a c, rest))
| App (f,cl) -> redrec (f, (Array.to_list cl)@stack)
| LetIn (_,f,_,cl) -> (Vars.subst1 f cl,stack)
| Cast (c,_,_) -> redrec (c,stack)
| Case (ci,p,c,lf) ->
(try
(special_red_case env sigma (whd_simpl_stack env sigma)
(ci,p,c,lf), stack)
with Redelimination -> raise NotStepReducible)
| Fix fix ->
(try match reduce_fix (whd_construct_stack env) sigma fix stack with
| Reduced s' -> s'
| NotReducible -> raise NotStepReducible
with Redelimination -> raise NotStepReducible)
| _ when isEvalRef env sigma x ->
let ref,u = destEvalRefU sigma x in
(try
fst (red_elim_const env sigma ref u stack)
with Redelimination ->
match reference_opt_value env sigma ref u with
| Some d -> (d, stack)
| None -> raise NotStepReducible)
| _ -> raise NotStepReducible
in
applist (redrec (c,[]))
let error_cannot_recognize ref =
user_err
(str "Cannot recognize a statement based on " ++
Nametab.pr_global_env Id.Set.empty ref ++ str".")
let reduce_to_ref_gen allow_product env sigma ref t =
if isIndRef ref then
let ((mind,u),t) = reduce_to_ind_gen allow_product env sigma t in
begin match ref with
| IndRef mind' when eq_ind mind mind' -> t
| _ -> error_cannot_recognize ref
end
else
(* lazily reduces to match the head of [t] with the expected [ref] *)
let rec elimrec env t l =
let c, _ = decompose_app_vect sigma t in
match EConstr.kind sigma c with
| Prod (n,ty,t') ->
if allow_product then
let open Context.Rel.Declaration in
elimrec (push_rel (LocalAssum (n,ty)) env) t' ((LocalAssum (n,ty))::l)
else
error_cannot_recognize ref
| _ ->
try
if GlobRef.equal (fst (global_of_constr sigma c)) ref
then it_mkProd_or_LetIn t l
else raise Not_found
with Not_found ->
try
let t' = nf_betaiota env sigma (one_step_reduce env sigma t) in
elimrec env t' l
with NotStepReducible -> error_cannot_recognize ref
in
elimrec env t []
let reduce_to_quantified_ref = reduce_to_ref_gen true
let reduce_to_atomic_ref = reduce_to_ref_gen false
¤ Dauer der Verarbeitung: 1.14 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|