(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Require Setoid.
Require Import PeanoNat Le Gt Minus Bool Lt.
Set Implicit Arguments.
(* Set Universe Polymorphism. *)
(******************************************************************)
(** * Basics: definition of polymorphic lists and some operations *)
(******************************************************************)
(** The definition of [list] is now in [Init/Datatypes],
as well as the definitions of [length] and [app] *)
Open Scope list_scope.
(** Standard notations for lists.
In a special module to avoid conflicts. *)
Module ListNotations.
Notation "[ ]" := nil (format "[ ]") : list_scope.
Notation "[ x ]" := (cons x nil) : list_scope.
Notation "[ x ; y ; .. ; z ]" := (cons x (cons y .. (cons z nil) ..)) : list_scope.
End ListNotations.
Import ListNotations.
Section Lists.
Variable A : Type.
(** Head and tail *)
Definition hd (default:A) (l:list A) :=
match l with
| [] => default
| x :: _ => x
end.
Definition hd_error (l:list A) :=
match l with
| [] => None
| x :: _ => Some x
end.
Definition tl (l:list A) :=
match l with
| [] => nil
| a :: m => m
end.
(** The [In] predicate *)
Fixpoint In (a:A) (l:list A) : Prop :=
match l with
| [] => False
| b :: m => b = a \/ In a m
end.
End Lists.
Section Facts.
Variable A : Type.
(** *** Generic facts *)
(** Discrimination *)
Theorem nil_cons : forall (x:A) (l:list A), [] <> x :: l.
Proof.
intros; discriminate.
Qed.
(** Destruction *)
Theorem destruct_list : forall l : list A, {x:A & {tl:list A | l = x::tl}}+{l = []}.
Proof.
induction l as [|a tail].
right; reflexivity.
left; exists a, tail; reflexivity.
Qed.
Lemma hd_error_tl_repr : forall l (a:A) r,
hd_error l = Some a /\ tl l = r <-> l = a :: r.
Proof. destruct l as [|x xs].
- unfold hd_error, tl; intros a r. split; firstorder discriminate.
- intros. simpl. split.
* intros (H1, H2). inversion H1. rewrite H2. reflexivity.
* inversion 1. subst. auto.
Qed.
Lemma hd_error_some_nil : forall l (a:A), hd_error l = Some a -> l <> nil.
Proof. unfold hd_error. destruct l; now discriminate. Qed.
Theorem length_zero_iff_nil (l : list A):
length l = 0 <-> l=[].
Proof.
split; [now destruct l | now intros ->].
Qed.
(** *** Head and tail *)
Theorem hd_error_nil : hd_error (@nil A) = None.
Proof.
simpl; reflexivity.
Qed.
Theorem hd_error_cons : forall (l : list A) (x : A), hd_error (x::l) = Some x.
Proof.
intros; simpl; reflexivity.
Qed.
(************************)
(** *** Facts about [In] *)
(************************)
(** Characterization of [In] *)
Theorem in_eq : forall (a:A) (l:list A), In a (a :: l).
Proof.
simpl; auto.
Qed.
Theorem in_cons : forall (a b:A) (l:list A), In b l -> In b (a :: l).
Proof.
simpl; auto.
Qed.
Theorem not_in_cons (x a : A) (l : list A):
~ In x (a::l) <-> x<>a /\ ~ In x l.
Proof.
simpl. intuition.
Qed.
Theorem in_nil : forall a:A, ~ In a [].
Proof.
unfold not; intros a H; inversion_clear H.
Qed.
Theorem in_split : forall x (l:list A), In x l -> exists l1 l2, l = l1++x::l2.
Proof.
induction l; simpl; destruct 1.
subst a; auto.
exists [], l; auto.
destruct (IHl H) as (l1,(l2,H0)).
exists (a::l1), l2; simpl. apply f_equal. auto.
Qed.
(** Inversion *)
Lemma in_inv : forall (a b:A) (l:list A), In b (a :: l) -> a = b \/ In b l.
Proof.
intros a b l H; inversion_clear H; auto.
Qed.
(** Decidability of [In] *)
Theorem in_dec :
(forall x y:A, {x = y} + {x <> y}) ->
forall (a:A) (l:list A), {In a l} + {~ In a l}.
Proof.
intro H; induction l as [| a0 l IHl].
right; apply in_nil.
destruct (H a0 a); simpl; auto.
destruct IHl; simpl; auto.
right; unfold not; intros [Hc1| Hc2]; auto.
Defined.
(**************************)
(** *** Facts about [app] *)
(**************************)
(** Discrimination *)
Theorem app_cons_not_nil : forall (x y:list A) (a:A), [] <> x ++ a :: y.
Proof.
unfold not.
destruct x as [| a l]; simpl; intros.
discriminate H.
discriminate H.
Qed.
(** Concat with [nil] *)
Theorem app_nil_l : forall l:list A, [] ++ l = l.
Proof.
reflexivity.
Qed.
Theorem app_nil_r : forall l:list A, l ++ [] = l.
Proof.
induction l; simpl; f_equal; auto.
Qed.
(* begin hide *)
(* Deprecated *)
Theorem app_nil_end : forall (l:list A), l = l ++ [].
Proof. symmetry; apply app_nil_r. Qed.
(* end hide *)
(** [app] is associative *)
Theorem app_assoc : forall l m n:list A, l ++ m ++ n = (l ++ m) ++ n.
Proof.
intros l m n; induction l; simpl; f_equal; auto.
Qed.
(* begin hide *)
(* Deprecated *)
Theorem app_assoc_reverse : forall l m n:list A, (l ++ m) ++ n = l ++ m ++ n.
Proof.
auto using app_assoc.
Qed.
Hint Resolve app_assoc_reverse : core.
(* end hide *)
(** [app] commutes with [cons] *)
Theorem app_comm_cons : forall (x y:list A) (a:A), a :: (x ++ y) = (a :: x) ++ y.
Proof.
auto.
Qed.
(** Facts deduced from the result of a concatenation *)
Theorem app_eq_nil : forall l l':list A, l ++ l' = [] -> l = [] /\ l' = [].
Proof.
destruct l as [| x l]; destruct l' as [| y l']; simpl; auto.
intro; discriminate.
intros H; discriminate H.
Qed.
Theorem app_eq_unit :
forall (x y:list A) (a:A),
x ++ y = [a] -> x = [] /\ y = [a] \/ x = [a] /\ y = [].
Proof.
destruct x as [| a l]; [ destruct y as [| a l] | destruct y as [| a0 l0] ];
simpl.
intros a H; discriminate H.
left; split; auto.
right; split; auto.
generalize H.
generalize (app_nil_r l); intros E.
rewrite -> E; auto.
intros.
injection H as H H0.
assert ([] = l ++ a0 :: l0) by auto.
apply app_cons_not_nil in H1 as [].
Qed.
Lemma app_inj_tail :
forall (x y:list A) (a b:A), x ++ [a] = y ++ [b] -> x = y /\ a = b.
Proof.
induction x as [| x l IHl];
[ destruct y as [| a l] | destruct y as [| a l0] ];
simpl; auto.
- intros a b H.
injection H.
auto.
- intros a0 b H.
injection H as H1 H0.
apply app_cons_not_nil in H0 as [].
- intros a b H.
injection H as H1 H0.
assert ([] = l ++ [a]) by auto.
apply app_cons_not_nil in H as [].
- intros a0 b H.
injection H as <- H0.
destruct (IHl l0 a0 b H0) as (<-,<-).
split; auto.
Qed.
(** Compatibility with other operations *)
Lemma app_length : forall l l' : list A, length (l++l') = length l + length l'.
Proof.
induction l; simpl; auto.
Qed.
Lemma in_app_or : forall (l m:list A) (a:A), In a (l ++ m) -> In a l \/ In a m.
Proof.
intros l m a.
elim l; simpl; auto.
intros a0 y H H0.
now_show ((a0 = a \/ In a y) \/ In a m).
elim H0; auto.
intro H1.
now_show ((a0 = a \/ In a y) \/ In a m).
elim (H H1); auto.
Qed.
Lemma in_or_app : forall (l m:list A) (a:A), In a l \/ In a m -> In a (l ++ m).
Proof.
intros l m a.
elim l; simpl; intro H.
now_show (In a m).
elim H; auto; intro H0.
now_show (In a m).
elim H0. (* subProof completed *)
intros y H0 H1.
now_show (H = a \/ In a (y ++ m)).
elim H1; auto 4.
intro H2.
now_show (H = a \/ In a (y ++ m)).
elim H2; auto.
Qed.
Lemma in_app_iff : forall l l' (a:A), In a (l++l') <-> In a l \/ In a l'.
Proof.
split; auto using in_app_or, in_or_app.
Qed.
Lemma app_inv_head:
forall l l1 l2 : list A, l ++ l1 = l ++ l2 -> l1 = l2.
Proof.
induction l; simpl; auto; injection 1; auto.
Qed.
Lemma app_inv_tail:
forall l l1 l2 : list A, l1 ++ l = l2 ++ l -> l1 = l2.
Proof.
intros l l1 l2; revert l1 l2 l.
induction l1 as [ | x1 l1]; destruct l2 as [ | x2 l2];
simpl; auto; intros l H.
absurd (length (x2 :: l2 ++ l) <= length l).
simpl; rewrite app_length; auto with arith.
rewrite <- H; auto with arith.
absurd (length (x1 :: l1 ++ l) <= length l).
simpl; rewrite app_length; auto with arith.
rewrite H; auto with arith.
injection H as H H0; f_equal; eauto.
Qed.
End Facts.
Hint Resolve app_assoc app_assoc_reverse: datatypes.
Hint Resolve app_comm_cons app_cons_not_nil: datatypes.
Hint Immediate app_eq_nil: datatypes.
Hint Resolve app_eq_unit app_inj_tail: datatypes.
Hint Resolve in_eq in_cons in_inv in_nil in_app_or in_or_app: datatypes.
(*******************************************)
(** * Operations on the elements of a list *)
(*******************************************)
Section Elts.
Variable A : Type.
(*****************************)
(** ** Nth element of a list *)
(*****************************)
Fixpoint nth (n:nat) (l:list A) (default:A) {struct l} : A :=
match n, l with
| O, x :: l' => x
| O, other => default
| S m, [] => default
| S m, x :: t => nth m t default
end.
Fixpoint nth_ok (n:nat) (l:list A) (default:A) {struct l} : bool :=
match n, l with
| O, x :: l' => true
| O, other => false
| S m, [] => false
| S m, x :: t => nth_ok m t default
end.
Lemma nth_in_or_default :
forall (n:nat) (l:list A) (d:A), {In (nth n l d) l} + {nth n l d = d}.
Proof.
intros n l d; revert n; induction l.
- right; destruct n; trivial.
- intros [|n]; simpl.
* left; auto.
* destruct (IHl n); auto.
Qed.
Lemma nth_S_cons :
forall (n:nat) (l:list A) (d a:A),
In (nth n l d) l -> In (nth (S n) (a :: l) d) (a :: l).
Proof.
simpl; auto.
Qed.
Fixpoint nth_error (l:list A) (n:nat) {struct n} : option A :=
match n, l with
| O, x :: _ => Some x
| S n, _ :: l => nth_error l n
| _, _ => None
end.
Definition nth_default (default:A) (l:list A) (n:nat) : A :=
match nth_error l n with
| Some x => x
| None => default
end.
Lemma nth_default_eq :
forall n l (d:A), nth_default d l n = nth n l d.
Proof.
unfold nth_default; induction n; intros [ | ] ?; simpl; auto.
Qed.
(** Results about [nth] *)
Lemma nth_In :
forall (n:nat) (l:list A) (d:A), n < length l -> In (nth n l d) l.
Proof.
unfold lt; induction n as [| n hn]; simpl.
- destruct l; simpl; [ inversion 2 | auto ].
- destruct l; simpl.
* inversion 2.
* intros d ie; right; apply hn; auto with arith.
Qed.
Lemma In_nth l x d : In x l ->
exists n, n < length l /\ nth n l d = x.
Proof.
induction l as [|a l IH].
- easy.
- intros [H|H].
* subst; exists 0; simpl; auto with arith.
* destruct (IH H) as (n & Hn & Hn').
exists (S n); simpl; auto with arith.
Qed.
Lemma nth_overflow : forall l n d, length l <= n -> nth n l d = d.
Proof.
induction l; destruct n; simpl; intros; auto.
- inversion H.
- apply IHl; auto with arith.
Qed.
Lemma nth_indep :
forall l n d d', n < length l -> nth n l d = nth n l d'.
Proof.
induction l.
- inversion 1.
- intros [|n] d d'; simpl; auto with arith.
Qed.
Lemma app_nth1 :
forall l l' d n, n < length l -> nth n (l++l') d = nth n l d.
Proof.
induction l.
- inversion 1.
- intros l' d [|n]; simpl; auto with arith.
Qed.
Lemma app_nth2 :
forall l l' d n, n >= length l -> nth n (l++l') d = nth (n-length l) l' d.
Proof.
induction l; intros l' d [|n]; auto.
- inversion 1.
- intros; simpl; rewrite IHl; auto with arith.
Qed.
Lemma nth_split n l d : n < length l ->
exists l1, exists l2, l = l1 ++ nth n l d :: l2 /\ length l1 = n.
Proof.
revert l.
induction n as [|n IH]; intros [|a l] H; try easy.
- exists nil; exists l; now simpl.
- destruct (IH l) as (l1 & l2 & Hl & Hl1); auto with arith.
exists (a::l1); exists l2; simpl; split; now f_equal.
Qed.
(** Results about [nth_error] *)
Lemma nth_error_In l n x : nth_error l n = Some x -> In x l.
Proof.
revert n. induction l as [|a l IH]; intros [|n]; simpl; try easy.
- injection 1; auto.
- eauto.
Qed.
Lemma In_nth_error l x : In x l -> exists n, nth_error l n = Some x.
Proof.
induction l as [|a l IH].
- easy.
- intros [H|H].
* subst; exists 0; simpl; auto with arith.
* destruct (IH H) as (n,Hn).
exists (S n); simpl; auto with arith.
Qed.
Lemma nth_error_None l n : nth_error l n = None <-> length l <= n.
Proof.
revert n. induction l; destruct n; simpl.
- split; auto.
- split; auto with arith.
- split; now auto with arith.
- rewrite IHl; split; auto with arith.
Qed.
Lemma nth_error_Some l n : nth_error l n <> None <-> n < length l.
Proof.
revert n. induction l; destruct n; simpl.
- split; [now destruct 1 | inversion 1].
- split; [now destruct 1 | inversion 1].
- split; now auto with arith.
- rewrite IHl; split; auto with arith.
Qed.
Lemma nth_error_split l n a : nth_error l n = Some a ->
exists l1, exists l2, l = l1 ++ a :: l2 /\ length l1 = n.
Proof.
revert l.
induction n as [|n IH]; intros [|x l] H; simpl in *; try easy.
- exists nil; exists l. now injection H as ->.
- destruct (IH _ H) as (l1 & l2 & H1 & H2).
exists (x::l1); exists l2; simpl; split; now f_equal.
Qed.
Lemma nth_error_app1 l l' n : n < length l ->
nth_error (l++l') n = nth_error l n.
Proof.
revert l.
induction n; intros [|a l] H; auto; try solve [inversion H].
simpl in *. apply IHn. auto with arith.
Qed.
Lemma nth_error_app2 l l' n : length l <= n ->
nth_error (l++l') n = nth_error l' (n-length l).
Proof.
revert l.
induction n; intros [|a l] H; auto; try solve [inversion H].
simpl in *. apply IHn. auto with arith.
Qed.
(*****************)
(** ** Remove *)
(*****************)
Hypothesis eq_dec : forall x y : A, {x = y}+{x <> y}.
Fixpoint remove (x : A) (l : list A) : list A :=
match l with
| [] => []
| y::tl => if (eq_dec x y) then remove x tl else y::(remove x tl)
end.
Theorem remove_In : forall (l : list A) (x : A), ~ In x (remove x l).
Proof.
induction l as [|x l]; auto.
intro y; simpl; destruct (eq_dec y x) as [yeqx | yneqx].
apply IHl.
unfold not; intro HF; simpl in HF; destruct HF; auto.
apply (IHl y); assumption.
Qed.
(******************************)
(** ** Last element of a list *)
(******************************)
(** [last l d] returns the last element of the list [l],
or the default value [d] if [l] is empty. *)
Fixpoint last (l:list A) (d:A) : A :=
match l with
| [] => d
| [a] => a
| a :: l => last l d
end.
(** [removelast l] remove the last element of [l] *)
Fixpoint removelast (l:list A) : list A :=
match l with
| [] => []
| [a] => []
| a :: l => a :: removelast l
end.
Lemma app_removelast_last :
forall l d, l <> [] -> l = removelast l ++ [last l d].
Proof.
induction l.
destruct 1; auto.
intros d _.
destruct l; auto.
pattern (a0::l) at 1; rewrite IHl with d; auto; discriminate.
Qed.
Lemma exists_last :
forall l, l <> [] -> { l' : (list A) & { a : A | l = l' ++ [a]}}.
Proof.
induction l.
destruct 1; auto.
intros _.
destruct l.
exists [], a; auto.
destruct IHl as [l' (a',H)]; try discriminate.
rewrite H.
exists (a::l'), a'; auto.
Qed.
Lemma removelast_app :
forall l l', l' <> [] -> removelast (l++l') = l ++ removelast l'.
Proof.
induction l.
simpl; auto.
simpl; intros.
assert (l++l' <> []).
destruct l.
simpl; auto.
simpl; discriminate.
specialize (IHl l' H).
destruct (l++l'); [elim H0; auto|f_equal; auto].
Qed.
(******************************************)
(** ** Counting occurrences of an element *)
(******************************************)
Fixpoint count_occ (l : list A) (x : A) : nat :=
match l with
| [] => 0
| y :: tl =>
let n := count_occ tl x in
if eq_dec y x then S n else n
end.
(** Compatibility of count_occ with operations on list *)
Theorem count_occ_In l x : In x l <-> count_occ l x > 0.
Proof.
induction l as [|y l]; simpl.
- split; [destruct 1 | apply gt_irrefl].
- destruct eq_dec as [->|Hneq]; rewrite IHl; intuition.
Qed.
Theorem count_occ_not_In l x : ~ In x l <-> count_occ l x = 0.
Proof.
rewrite count_occ_In. unfold gt. now rewrite Nat.nlt_ge, Nat.le_0_r.
Qed.
Lemma count_occ_nil x : count_occ [] x = 0.
Proof.
reflexivity.
Qed.
Theorem count_occ_inv_nil l :
(forall x:A, count_occ l x = 0) <-> l = [].
Proof.
split.
- induction l as [|x l]; trivial.
intros H. specialize (H x). simpl in H.
destruct eq_dec as [_|NEQ]; [discriminate|now elim NEQ].
- now intros ->.
Qed.
Lemma count_occ_cons_eq l x y :
x = y -> count_occ (x::l) y = S (count_occ l y).
Proof.
intros H. simpl. now destruct (eq_dec x y).
Qed.
Lemma count_occ_cons_neq l x y :
x <> y -> count_occ (x::l) y = count_occ l y.
Proof.
intros H. simpl. now destruct (eq_dec x y).
Qed.
End Elts.
(*******************************)
(** * Manipulating whole lists *)
(*******************************)
Section ListOps.
Variable A : Type.
(*************************)
(** ** Reverse *)
(*************************)
Fixpoint rev (l:list A) : list A :=
match l with
| [] => []
| x :: l' => rev l' ++ [x]
end.
Lemma rev_app_distr : forall x y:list A, rev (x ++ y) = rev y ++ rev x.
Proof.
induction x as [| a l IHl].
destruct y as [| a l].
simpl.
auto.
simpl.
rewrite app_nil_r; auto.
intro y.
simpl.
rewrite (IHl y).
rewrite app_assoc; trivial.
Qed.
Remark rev_unit : forall (l:list A) (a:A), rev (l ++ [a]) = a :: rev l.
Proof.
intros.
apply (rev_app_distr l [a]); simpl; auto.
Qed.
Lemma rev_involutive : forall l:list A, rev (rev l) = l.
Proof.
induction l as [| a l IHl].
simpl; auto.
simpl.
rewrite (rev_unit (rev l) a).
rewrite IHl; auto.
Qed.
(** Compatibility with other operations *)
Lemma in_rev : forall l x, In x l <-> In x (rev l).
Proof.
induction l.
simpl; intuition.
intros.
simpl.
intuition.
subst.
apply in_or_app; right; simpl; auto.
apply in_or_app; left; firstorder.
destruct (in_app_or _ _ _ H); firstorder.
Qed.
Lemma rev_length : forall l, length (rev l) = length l.
Proof.
induction l;simpl; auto.
rewrite app_length.
rewrite IHl.
simpl.
elim (length l); simpl; auto.
Qed.
Lemma rev_nth : forall l d n, n < length l ->
nth n (rev l) d = nth (length l - S n) l d.
Proof.
induction l.
intros; inversion H.
intros.
simpl in H.
simpl (rev (a :: l)).
simpl (length (a :: l) - S n).
inversion H.
rewrite <- minus_n_n; simpl.
rewrite <- rev_length.
rewrite app_nth2; auto.
rewrite <- minus_n_n; auto.
rewrite app_nth1; auto.
rewrite (minus_plus_simpl_l_reverse (length l) n 1).
replace (1 + length l) with (S (length l)); auto with arith.
rewrite <- minus_Sn_m; auto with arith.
apply IHl ; auto with arith.
rewrite rev_length; auto.
Qed.
(** An alternative tail-recursive definition for reverse *)
Fixpoint rev_append (l l': list A) : list A :=
match l with
| [] => l'
| a::l => rev_append l (a::l')
end.
Definition rev' l : list A := rev_append l [].
Lemma rev_append_rev : forall l l', rev_append l l' = rev l ++ l'.
Proof.
induction l; simpl; auto; intros.
rewrite <- app_assoc; firstorder.
Qed.
Lemma rev_alt : forall l, rev l = rev_append l [].
Proof.
intros; rewrite rev_append_rev.
rewrite app_nil_r; trivial.
Qed.
(*********************************************)
(** Reverse Induction Principle on Lists *)
(*********************************************)
Section Reverse_Induction.
Lemma rev_list_ind :
forall P:list A-> Prop,
P [] ->
(forall (a:A) (l:list A), P (rev l) -> P (rev (a :: l))) ->
forall l:list A, P (rev l).
Proof.
induction l; auto.
Qed.
Theorem rev_ind :
forall P:list A -> Prop,
P [] ->
(forall (x:A) (l:list A), P l -> P (l ++ [x])) -> forall l:list A, P l.
Proof.
intros.
generalize (rev_involutive l).
intros E; rewrite <- E.
apply (rev_list_ind P).
auto.
simpl.
intros.
apply (H0 a (rev l0)).
auto.
Qed.
End Reverse_Induction.
(*************************)
(** ** Concatenation *)
(*************************)
Fixpoint concat (l : list (list A)) : list A :=
match l with
| nil => nil
| cons x l => x ++ concat l
end.
Lemma concat_nil : concat nil = nil.
Proof.
reflexivity.
Qed.
Lemma concat_cons : forall x l, concat (cons x l) = x ++ concat l.
Proof.
reflexivity.
Qed.
Lemma concat_app : forall l1 l2, concat (l1 ++ l2) = concat l1 ++ concat l2.
Proof.
intros l1; induction l1 as [|x l1 IH]; intros l2; simpl.
+ reflexivity.
+ rewrite IH; apply app_assoc.
Qed.
(***********************************)
(** ** Decidable equality on lists *)
(***********************************)
Hypothesis eq_dec : forall (x y : A), {x = y}+{x <> y}.
Lemma list_eq_dec : forall l l':list A, {l = l'} + {l <> l'}.
Proof. decide equality. Defined.
End ListOps.
(***************************************************)
(** * Applying functions to the elements of a list *)
(***************************************************)
(************)
(** ** Map *)
(************)
Section Map.
Variables (A : Type) (B : Type).
Variable f : A -> B.
Fixpoint map (l:list A) : list B :=
match l with
| [] => []
| a :: t => (f a) :: (map t)
end.
Lemma map_cons (x:A)(l:list A) : map (x::l) = (f x) :: (map l).
Proof.
reflexivity.
Qed.
Lemma in_map :
forall (l:list A) (x:A), In x l -> In (f x) (map l).
Proof.
induction l; firstorder (subst; auto).
Qed.
Lemma in_map_iff : forall l y, In y (map l) <-> exists x, f x = y /\ In x l.
Proof.
induction l; firstorder (subst; auto).
Qed.
Lemma map_length : forall l, length (map l) = length l.
Proof.
induction l; simpl; auto.
Qed.
Lemma map_nth : forall l d n,
nth n (map l) (f d) = f (nth n l d).
Proof.
induction l; simpl map; destruct n; firstorder.
Qed.
Lemma map_nth_error : forall n l d,
nth_error l n = Some d -> nth_error (map l) n = Some (f d).
Proof.
induction n; intros [ | ] ? Heq; simpl in *; inversion Heq; auto.
Qed.
Lemma map_app : forall l l',
map (l++l') = (map l)++(map l').
Proof.
induction l; simpl; auto.
intros; rewrite IHl; auto.
Qed.
Lemma map_rev : forall l, map (rev l) = rev (map l).
Proof.
induction l; simpl; auto.
rewrite map_app.
rewrite IHl; auto.
Qed.
Lemma map_eq_nil : forall l, map l = [] -> l = [].
Proof.
destruct l; simpl; reflexivity || discriminate.
Qed.
(** [map] and count of occurrences *)
Hypothesis decA: forall x1 x2 : A, {x1 = x2} + {x1 <> x2}.
Hypothesis decB: forall y1 y2 : B, {y1 = y2} + {y1 <> y2}.
Hypothesis Hfinjective: forall x1 x2: A, (f x1) = (f x2) -> x1 = x2.
Theorem count_occ_map x l:
count_occ decA l x = count_occ decB (map l) (f x).
Proof.
revert x. induction l as [| a l' Hrec]; intro x; simpl.
- reflexivity.
- specialize (Hrec x).
destruct (decA a x) as [H1|H1], (decB (f a) (f x)) as [H2|H2].
* rewrite Hrec. reflexivity.
* contradiction H2. rewrite H1. reflexivity.
* specialize (Hfinjective H2). contradiction H1.
* assumption.
Qed.
(** [flat_map] *)
Definition flat_map (f:A -> list B) :=
fix flat_map (l:list A) : list B :=
match l with
| nil => nil
| cons x t => (f x)++(flat_map t)
end.
Lemma in_flat_map : forall (f:A->list B)(l:list A)(y:B),
In y (flat_map f l) <-> exists x, In x l /\ In y (f x).
Proof using A B.
clear Hfinjective.
induction l; simpl; split; intros.
contradiction.
destruct H as (x,(H,_)); contradiction.
destruct (in_app_or _ _ _ H).
exists a; auto.
destruct (IHl y) as (H1,_); destruct (H1 H0) as (x,(H2,H3)).
exists x; auto.
apply in_or_app.
destruct H as (x,(H0,H1)); destruct H0.
subst; auto.
right; destruct (IHl y) as (_,H2); apply H2.
exists x; auto.
Qed.
End Map.
Lemma flat_map_concat_map : forall A B (f : A -> list B) l,
flat_map f l = concat (map f l).
Proof.
intros A B f l; induction l as [|x l IH]; simpl.
+ reflexivity.
+ rewrite IH; reflexivity.
Qed.
Lemma concat_map : forall A B (f : A -> B) l, map f (concat l) = concat (map (map f) l).
Proof.
intros A B f l; induction l as [|x l IH]; simpl.
+ reflexivity.
+ rewrite map_app, IH; reflexivity.
Qed.
Lemma map_id : forall (A :Type) (l : list A),
map (fun x => x) l = l.
Proof.
induction l; simpl; auto; rewrite IHl; auto.
Qed.
Lemma map_map : forall (A B C:Type)(f:A->B)(g:B->C) l,
map g (map f l) = map (fun x => g (f x)) l.
Proof.
induction l; simpl; auto.
rewrite IHl; auto.
Qed.
Lemma map_ext_in :
forall (A B : Type)(f g:A->B) l, (forall a, In a l -> f a = g a) -> map f l = map g l.
Proof.
induction l; simpl; auto.
intros; rewrite H by intuition; rewrite IHl; auto.
Qed.
Lemma ext_in_map :
forall (A B : Type)(f g:A->B) l, map f l = map g l -> forall a, In a l -> f a = g a.
Proof. induction l; intros [=] ? []; subst; auto. Qed.
Arguments ext_in_map [A B f g l].
Lemma map_ext_in_iff :
forall (A B : Type)(f g:A->B) l, map f l = map g l <-> forall a, In a l -> f a = g a.
Proof. split; [apply ext_in_map | apply map_ext_in]. Qed.
Arguments map_ext_in_iff {A B f g l}.
Lemma map_ext :
forall (A B : Type)(f g:A->B), (forall a, f a = g a) -> forall l, map f l = map g l.
Proof.
intros; apply map_ext_in; auto.
Qed.
(************************************)
(** Left-to-right iterator on lists *)
(************************************)
Section Fold_Left_Recursor.
Variables (A : Type) (B : Type).
Variable f : A -> B -> A.
Fixpoint fold_left (l:list B) (a0:A) : A :=
match l with
| nil => a0
| cons b t => fold_left t (f a0 b)
end.
Lemma fold_left_app : forall (l l':list B)(i:A),
fold_left (l++l') i = fold_left l' (fold_left l i).
Proof.
induction l.
simpl; auto.
intros.
simpl.
auto.
Qed.
End Fold_Left_Recursor.
Lemma fold_left_length :
forall (A:Type)(l:list A), fold_left (fun x _ => S x) l 0 = length l.
Proof.
intros A l.
enough (H : forall n, fold_left (fun x _ => S x) l n = n + length l) by exact (H 0).
induction l; simpl; auto.
intros; rewrite IHl.
simpl; auto with arith.
Qed.
(************************************)
(** Right-to-left iterator on lists *)
(************************************)
Section Fold_Right_Recursor.
Variables (A : Type) (B : Type).
Variable f : B -> A -> A.
Variable a0 : A.
Fixpoint fold_right (l:list B) : A :=
match l with
| nil => a0
| cons b t => f b (fold_right t)
end.
End Fold_Right_Recursor.
Lemma fold_right_app : forall (A B:Type)(f:A->B->B) l l' i,
fold_right f i (l++l') = fold_right f (fold_right f i l') l.
Proof.
induction l.
simpl; auto.
simpl; intros.
f_equal; auto.
Qed.
Lemma fold_left_rev_right : forall (A B:Type)(f:A->B->B) l i,
fold_right f i (rev l) = fold_left (fun x y => f y x) l i.
Proof.
induction l.
simpl; auto.
intros.
simpl.
rewrite fold_right_app; simpl; auto.
Qed.
Theorem fold_symmetric :
forall (A : Type) (f : A -> A -> A),
(forall x y z : A, f x (f y z) = f (f x y) z) ->
forall (a0 : A), (forall y : A, f a0 y = f y a0) ->
forall (l : list A), fold_left f l a0 = fold_right f a0 l.
Proof.
intros A f assoc a0 comma0 l.
induction l as [ | a1 l ]; [ simpl; reflexivity | ].
simpl. rewrite <- IHl. clear IHl. revert a1. induction l; [ auto | ].
simpl. intro. rewrite <- assoc. rewrite IHl. rewrite IHl. auto.
Qed.
(** [(list_power x y)] is [y^x], or the set of sequences of elts of [y]
indexed by elts of [x], sorted in lexicographic order. *)
Fixpoint list_power (A B:Type)(l:list A) (l':list B) :
list (list (A * B)) :=
match l with
| nil => cons nil nil
| cons x t =>
flat_map (fun f:list (A * B) => map (fun y:B => cons (x, y) f) l')
(list_power t l')
end.
(*************************************)
(** ** Boolean operations over lists *)
(*************************************)
Section Bool.
Variable A : Type.
Variable f : A -> bool.
(** find whether a boolean function can be satisfied by an
elements of the list. *)
Fixpoint existsb (l:list A) : bool :=
match l with
| nil => false
| a::l => f a || existsb l
end.
Lemma existsb_exists :
forall l, existsb l = true <-> exists x, In x l /\ f x = true.
Proof.
induction l; simpl; intuition.
inversion H.
firstorder.
destruct (orb_prop _ _ H1); firstorder.
firstorder.
subst.
rewrite H2; auto.
Qed.
Lemma existsb_nth : forall l n d, n < length l ->
existsb l = false -> f (nth n l d) = false.
Proof.
induction l.
inversion 1.
simpl; intros.
destruct (orb_false_elim _ _ H0); clear H0; auto.
destruct n ; auto.
rewrite IHl; auto with arith.
Qed.
Lemma existsb_app : forall l1 l2,
existsb (l1++l2) = existsb l1 || existsb l2.
Proof.
induction l1; intros l2; simpl.
solve[auto].
case (f a); simpl; solve[auto].
Qed.
(** find whether a boolean function is satisfied by
all the elements of a list. *)
Fixpoint forallb (l:list A) : bool :=
match l with
| nil => true
| a::l => f a && forallb l
end.
Lemma forallb_forall :
forall l, forallb l = true <-> (forall x, In x l -> f x = true).
Proof.
induction l; simpl; intuition.
destruct (andb_prop _ _ H1).
congruence.
destruct (andb_prop _ _ H1); auto.
assert (forallb l = true).
apply H0; intuition.
rewrite H1; auto.
Qed.
Lemma forallb_app :
forall l1 l2, forallb (l1++l2) = forallb l1 && forallb l2.
Proof.
induction l1; simpl.
solve[auto].
case (f a); simpl; solve[auto].
Qed.
(** [filter] *)
Fixpoint filter (l:list A) : list A :=
match l with
| nil => nil
| x :: l => if f x then x::(filter l) else filter l
end.
Lemma filter_In : forall x l, In x (filter l) <-> In x l /\ f x = true.
Proof.
induction l; simpl.
intuition.
intros.
case_eq (f a); intros; simpl; intuition congruence.
Qed.
(** [find] *)
Fixpoint find (l:list A) : option A :=
match l with
| nil => None
| x :: tl => if f x then Some x else find tl
end.
Lemma find_some l x : find l = Some x -> In x l /\ f x = true.
Proof.
induction l as [|a l IH]; simpl; [easy| ].
case_eq (f a); intros Ha Eq.
* injection Eq as ->; auto.
* destruct (IH Eq); auto.
Qed.
Lemma find_none l : find l = None -> forall x, In x l -> f x = false.
Proof.
induction l as [|a l IH]; simpl; [easy|].
case_eq (f a); intros Ha Eq x IN; [easy|].
destruct IN as [<-|IN]; auto.
Qed.
(** [partition] *)
Fixpoint partition (l:list A) : list A * list A :=
match l with
| nil => (nil, nil)
| x :: tl => let (g,d) := partition tl in
if f x then (x::g,d) else (g,x::d)
end.
Theorem partition_cons1 a l l1 l2:
partition l = (l1, l2) ->
f a = true ->
partition (a::l) = (a::l1, l2).
Proof.
simpl. now intros -> ->.
Qed.
Theorem partition_cons2 a l l1 l2:
partition l = (l1, l2) ->
f a=false ->
partition (a::l) = (l1, a::l2).
Proof.
simpl. now intros -> ->.
Qed.
Theorem partition_length l l1 l2:
partition l = (l1, l2) ->
length l = length l1 + length l2.
Proof.
revert l1 l2. induction l as [ | a l' Hrec]; intros l1 l2.
- now intros [= <- <- ].
- simpl. destruct (f a), (partition l') as (left, right);
intros [= <- <- ]; simpl; rewrite (Hrec left right); auto.
Qed.
Theorem partition_inv_nil (l : list A):
partition l = ([], []) <-> l = [].
Proof.
split.
- destruct l as [|a l'].
* intuition.
* simpl. destruct (f a), (partition l'); now intros [= -> ->].
- now intros ->.
Qed.
Theorem elements_in_partition l l1 l2:
partition l = (l1, l2) ->
forall x:A, In x l <-> In x l1 \/ In x l2.
Proof.
revert l1 l2. induction l as [| a l' Hrec]; simpl; intros l1 l2 Eq x.
- injection Eq as <- <-. tauto.
- destruct (partition l') as (left, right).
specialize (Hrec left right eq_refl x).
destruct (f a); injection Eq as <- <-; simpl; tauto.
Qed.
End Bool.
(******************************************************)
(** ** Operations on lists of pairs or lists of lists *)
(******************************************************)
Section ListPairs.
Variables (A : Type) (B : Type).
(** [split] derives two lists from a list of pairs *)
Fixpoint split (l:list (A*B)) : list A * list B :=
match l with
| [] => ([], [])
| (x,y) :: tl => let (left,right) := split tl in (x::left, y::right)
end.
Lemma in_split_l : forall (l:list (A*B))(p:A*B),
In p l -> In (fst p) (fst (split l)).
Proof.
induction l; simpl; intros; auto.
destruct p; destruct a; destruct (split l); simpl in *.
destruct H.
injection H; auto.
right; apply (IHl (a0,b) H).
Qed.
Lemma in_split_r : forall (l:list (A*B))(p:A*B),
In p l -> In (snd p) (snd (split l)).
Proof.
induction l; simpl; intros; auto.
destruct p; destruct a; destruct (split l); simpl in *.
destruct H.
injection H; auto.
right; apply (IHl (a0,b) H).
Qed.
Lemma split_nth : forall (l:list (A*B))(n:nat)(d:A*B),
nth n l d = (nth n (fst (split l)) (fst d), nth n (snd (split l)) (snd d)).
Proof.
induction l.
destruct n; destruct d; simpl; auto.
destruct n; destruct d; simpl; auto.
destruct a; destruct (split l); simpl; auto.
destruct a; destruct (split l); simpl in *; auto.
apply IHl.
Qed.
Lemma split_length_l : forall (l:list (A*B)),
length (fst (split l)) = length l.
Proof.
induction l; simpl; auto.
destruct a; destruct (split l); simpl; auto.
Qed.
Lemma split_length_r : forall (l:list (A*B)),
length (snd (split l)) = length l.
Proof.
induction l; simpl; auto.
destruct a; destruct (split l); simpl; auto.
Qed.
(** [combine] is the opposite of [split].
Lists given to [combine] are meant to be of same length.
If not, [combine] stops on the shorter list *)
Fixpoint combine (l : list A) (l' : list B) : list (A*B) :=
match l,l' with
| x::tl, y::tl' => (x,y)::(combine tl tl')
| _, _ => nil
end.
Lemma split_combine : forall (l: list (A*B)),
let (l1,l2) := split l in combine l1 l2 = l.
Proof.
induction l.
simpl; auto.
destruct a; simpl.
destruct (split l); simpl in *.
f_equal; auto.
Qed.
Lemma combine_split : forall (l:list A)(l':list B), length l = length l' ->
split (combine l l') = (l,l').
Proof.
induction l, l'; simpl; trivial; try discriminate.
now intros [= ->%IHl].
Qed.
Lemma in_combine_l : forall (l:list A)(l':list B)(x:A)(y:B),
In (x,y) (combine l l') -> In x l.
Proof.
induction l.
simpl; auto.
destruct l'; simpl; auto; intros.
contradiction.
destruct H.
injection H; auto.
right; apply IHl with l' y; auto.
Qed.
Lemma in_combine_r : forall (l:list A)(l':list B)(x:A)(y:B),
In (x,y) (combine l l') -> In y l'.
Proof.
induction l.
simpl; intros; contradiction.
destruct l'; simpl; auto; intros.
destruct H.
injection H; auto.
right; apply IHl with x; auto.
Qed.
Lemma combine_length : forall (l:list A)(l':list B),
length (combine l l') = min (length l) (length l').
Proof.
induction l.
simpl; auto.
destruct l'; simpl; auto.
Qed.
Lemma combine_nth : forall (l:list A)(l':list B)(n:nat)(x:A)(y:B),
length l = length l' ->
nth n (combine l l') (x,y) = (nth n l x, nth n l' y).
Proof.
induction l; destruct l'; intros; try discriminate.
destruct n; simpl; auto.
destruct n; simpl in *; auto.
Qed.
(** [list_prod] has the same signature as [combine], but unlike
[combine], it adds every possible pairs, not only those at the
same position. *)
Fixpoint list_prod (l:list A) (l':list B) :
list (A * B) :=
match l with
| nil => nil
| cons x t => (map (fun y:B => (x, y)) l')++(list_prod t l')
end.
Lemma in_prod_aux :
forall (x:A) (y:B) (l:list B),
In y l -> In (x, y) (map (fun y0:B => (x, y0)) l).
Proof.
induction l;
[ simpl; auto
| simpl; destruct 1 as [H1| ];
[ left; rewrite H1; trivial | right; auto ] ].
Qed.
Lemma in_prod :
forall (l:list A) (l':list B) (x:A) (y:B),
In x l -> In y l' -> In (x, y) (list_prod l l').
Proof.
induction l;
[ simpl; tauto
| simpl; intros; apply in_or_app; destruct H;
[ left; rewrite H; apply in_prod_aux; assumption | right; auto ] ].
Qed.
Lemma in_prod_iff :
forall (l:list A)(l':list B)(x:A)(y:B),
In (x,y) (list_prod l l') <-> In x l /\ In y l'.
Proof.
split; [ | intros; apply in_prod; intuition ].
induction l; simpl; intros.
intuition.
destruct (in_app_or _ _ _ H); clear H.
destruct (in_map_iff (fun y : B => (a, y)) l' (x,y)) as (H1,_).
destruct (H1 H0) as (z,(H2,H3)); clear H0 H1.
injection H2 as -> ->; intuition.
intuition.
Qed.
Lemma prod_length : forall (l:list A)(l':list B),
length (list_prod l l') = (length l) * (length l').
Proof.
induction l; simpl; auto.
intros.
rewrite app_length.
rewrite map_length.
auto.
Qed.
End ListPairs.
(*****************************************)
(** * Miscellaneous operations on lists *)
(*****************************************)
(******************************)
(** ** Length order of lists *)
(******************************)
Section length_order.
Variable A : Type.
Definition lel (l m:list A) := length l <= length m.
Variables a b : A.
Variables l m n : list A.
Lemma lel_refl : lel l l.
Proof.
unfold lel; auto with arith.
Qed.
Lemma lel_trans : lel l m -> lel m n -> lel l n.
Proof.
unfold lel; intros.
now_show (length l <= length n).
apply le_trans with (length m); auto with arith.
Qed.
Lemma lel_cons_cons : lel l m -> lel (a :: l) (b :: m).
Proof.
unfold lel; simpl; auto with arith.
Qed.
Lemma lel_cons : lel l m -> lel l (b :: m).
Proof.
unfold lel; simpl; auto with arith.
Qed.
Lemma lel_tail : lel (a :: l) (b :: m) -> lel l m.
Proof.
unfold lel; simpl; auto with arith.
Qed.
Lemma lel_nil : forall l':list A, lel l' nil -> nil = l'.
Proof.
intro l'; elim l'; auto with arith.
intros a' y H H0.
now_show (nil = a' :: y).
absurd (S (length y) <= 0); auto with arith.
Qed.
End length_order.
Hint Resolve lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons:
datatypes.
(******************************)
(** ** Set inclusion on list *)
(******************************)
Section SetIncl.
Variable A : Type.
Definition incl (l m:list A) := forall a:A, In a l -> In a m.
Hint Unfold incl : core.
Lemma incl_refl : forall l:list A, incl l l.
Proof.
auto.
Qed.
Hint Resolve incl_refl : core.
Lemma incl_tl : forall (a:A) (l m:list A), incl l m -> incl l (a :: m).
Proof.
auto with datatypes.
Qed.
Hint Immediate incl_tl : core.
Lemma incl_tran : forall l m n:list A, incl l m -> incl m n -> incl l n.
Proof.
auto.
Qed.
Lemma incl_appl : forall l m n:list A, incl l n -> incl l (n ++ m).
Proof.
auto with datatypes.
Qed.
Hint Immediate incl_appl : core.
Lemma incl_appr : forall l m n:list A, incl l n -> incl l (m ++ n).
Proof.
auto with datatypes.
Qed.
Hint Immediate incl_appr : core.
Lemma incl_cons :
forall (a:A) (l m:list A), In a m -> incl l m -> incl (a :: l) m.
Proof.
unfold incl; simpl; intros a l m H H0 a0 H1.
now_show (In a0 m).
elim H1.
now_show (a = a0 -> In a0 m).
elim H1; auto; intro H2.
now_show (a = a0 -> In a0 m).
elim H2; auto. (* solves subgoal *)
now_show (In a0 l -> In a0 m).
auto.
Qed.
Hint Resolve incl_cons : core.
Lemma incl_app : forall l m n:list A, incl l n -> incl m n -> incl (l ++ m) n.
Proof.
unfold incl; simpl; intros l m n H H0 a H1.
now_show (In a n).
elim (in_app_or _ _ _ H1); auto.
Qed.
Hint Resolve incl_app : core.
End SetIncl.
Hint Resolve incl_refl incl_tl incl_tran incl_appl incl_appr incl_cons
incl_app: datatypes.
(**************************************)
(** * Cutting a list at some position *)
(**************************************)
Section Cutting.
Variable A : Type.
Fixpoint firstn (n:nat)(l:list A) : list A :=
match n with
| 0 => nil
| S n => match l with
| nil => nil
| a::l => a::(firstn n l)
end
end.
Lemma firstn_nil n: firstn n [] = [].
Proof. induction n; now simpl. Qed.
Lemma firstn_cons n a l: firstn (S n) (a::l) = a :: (firstn n l).
Proof. now simpl. Qed.
Lemma firstn_all l: firstn (length l) l = l.
Proof. induction l as [| ? ? H]; simpl; [reflexivity | now rewrite H]. Qed.
Lemma firstn_all2 n: forall (l:list A), (length l) <= n -> firstn n l = l.
Proof. induction n as [|k iHk].
- intro. inversion 1 as [H1|?].
rewrite (length_zero_iff_nil l) in H1. subst. now simpl.
- destruct l as [|x xs]; simpl.
* now reflexivity.
* simpl. intro H. apply Peano.le_S_n in H. f_equal. apply iHk, H.
Qed.
Lemma firstn_O l: firstn 0 l = [].
Proof. now simpl. Qed.
Lemma firstn_le_length n: forall l:list A, length (firstn n l) <= n.
Proof.
induction n as [|k iHk]; simpl; [auto | destruct l as [|x xs]; simpl].
- auto with arith.
- apply Peano.le_n_S, iHk.
Qed.
Lemma firstn_length_le: forall l:list A, forall n:nat,
n <= length l -> length (firstn n l) = n.
Proof. induction l as [|x xs Hrec].
- simpl. intros n H. apply le_n_0_eq in H. rewrite <- H. now simpl.
- destruct n.
* now simpl.
* simpl. intro H. apply le_S_n in H. now rewrite (Hrec n H).
Qed.
Lemma firstn_app n:
forall l1 l2,
firstn n (l1 ++ l2) = (firstn n l1) ++ (firstn (n - length l1) l2).
Proof. induction n as [|k iHk]; intros l1 l2.
- now simpl.
- destruct l1 as [|x xs].
* unfold firstn at 2, length. now rewrite 2!app_nil_l, <- minus_n_O.
* rewrite <- app_comm_cons. simpl. f_equal. apply iHk.
Qed.
Lemma firstn_app_2 n:
forall l1 l2,
firstn ((length l1) + n) (l1 ++ l2) = l1 ++ firstn n l2.
Proof. induction n as [| k iHk];intros l1 l2.
- unfold firstn at 2. rewrite <- plus_n_O, app_nil_r.
rewrite firstn_app. rewrite <- minus_diag_reverse.
unfold firstn at 2. rewrite app_nil_r. apply firstn_all.
- destruct l2 as [|x xs].
* simpl. rewrite app_nil_r. apply firstn_all2. auto with arith.
* rewrite firstn_app. assert (H0 : (length l1 + S k - length l1) = S k).
auto with arith.
rewrite H0, firstn_all2; [reflexivity | auto with arith].
Qed.
Lemma firstn_firstn:
forall l:list A,
forall i j : nat,
firstn i (firstn j l) = firstn (min i j) l.
Proof. induction l as [|x xs Hl].
- intros. simpl. now rewrite ?firstn_nil.
- destruct i.
* intro. now simpl.
* destruct j.
+ now simpl.
+ simpl. f_equal. apply Hl.
Qed.
Fixpoint skipn (n:nat)(l:list A) : list A :=
match n with
| 0 => l
| S n => match l with
| nil => nil
| a::l => skipn n l
end
end.
Lemma firstn_skipn_comm : forall m n l,
firstn m (skipn n l) = skipn n (firstn (n + m) l).
Proof. now intros m; induction n; intros []; simpl; destruct m. Qed.
Lemma skipn_firstn_comm : forall m n l,
skipn m (firstn n l) = firstn (n - m) (skipn m l).
Proof. now induction m; intros [] []; simpl; rewrite ?firstn_nil. Qed.
Lemma skipn_O : forall l, skipn 0 l = l.
Proof. reflexivity. Qed.
Lemma skipn_nil : forall n, skipn n ([] : list A) = [].
Proof. now intros []. Qed.
Lemma skipn_cons n a l: skipn (S n) (a::l) = skipn n l.
Proof. reflexivity. Qed.
Lemma skipn_none : forall l, skipn (length l) l = [].
Proof. now induction l. Qed.
Lemma skipn_all2 n: forall l, length l <= n -> skipn n l = [].
Proof.
intros l L%Nat.sub_0_le; rewrite <-(firstn_all l) at 1.
now rewrite skipn_firstn_comm, L.
Qed.
Lemma firstn_skipn : forall n l, firstn n l ++ skipn n l = l.
Proof.
induction n.
simpl; auto.
destruct l; simpl; auto.
f_equal; auto.
Qed.
Lemma firstn_length : forall n l, length (firstn n l) = min n (length l).
Proof.
induction n; destruct l; simpl; auto.
Qed.
Lemma skipn_length n :
forall l, length (skipn n l) = length l - n.
Proof.
induction n.
- intros l; simpl; rewrite Nat.sub_0_r; reflexivity.
- destruct l; simpl; auto.
Qed.
Lemma skipn_all l: skipn (length l) l = nil.
Proof. now induction l. Qed.
Lemma skipn_app n : forall l1 l2,
skipn n (l1 ++ l2) = (skipn n l1) ++ (skipn (n - length l1) l2).
Proof. induction n; auto; intros [|]; simpl; auto. Qed.
Lemma firstn_skipn_rev: forall x l,
firstn x l = rev (skipn (length l - x) (rev l)).
Proof.
intros x l; rewrite <-(firstn_skipn x l) at 3.
rewrite rev_app_distr, skipn_app, rev_app_distr, rev_length,
skipn_length, Nat.sub_diag; simpl; rewrite rev_involutive.
rewrite <-app_nil_r at 1; f_equal; symmetry; apply length_zero_iff_nil.
repeat rewrite rev_length, skipn_length; apply Nat.sub_diag.
Qed.
Lemma firstn_rev: forall x l,
firstn x (rev l) = rev (skipn (length l - x) l).
Proof.
now intros x l; rewrite firstn_skipn_rev, rev_involutive, rev_length.
Qed.
Lemma skipn_rev: forall x l,
skipn x (rev l) = rev (firstn (length l - x) l).
Proof.
intros x l; rewrite firstn_skipn_rev, rev_involutive, <-rev_length.
destruct (Nat.le_ge_cases (length (rev l)) x) as [L | L].
- rewrite skipn_all2; [apply Nat.sub_0_le in L | trivial].
now rewrite L, Nat.sub_0_r, skipn_none.
- replace (length (rev l) - (length (rev l) - x))
with (length (rev l) + x - length (rev l)).
rewrite minus_plus. reflexivity.
rewrite <- (Nat.sub_add _ _ L) at 2.
now rewrite <-!(Nat.add_comm x), <-minus_plus_simpl_l_reverse.
Qed.
Lemma removelast_firstn : forall n l, n < length l ->
removelast (firstn (S n) l) = firstn n l.
Proof.
induction n; destruct l.
simpl; auto.
simpl; auto.
simpl; auto.
intros.
simpl in H.
change (firstn (S (S n)) (a::l)) with ((a::nil)++firstn (S n) l).
change (firstn (S n) (a::l)) with (a::firstn n l).
rewrite removelast_app.
rewrite IHn; auto with arith.
clear IHn; destruct l; simpl in *; try discriminate.
inversion_clear H.
inversion_clear H0.
Qed.
Lemma firstn_removelast : forall n l, n < length l ->
firstn n (removelast l) = firstn n l.
Proof.
induction n; destruct l.
simpl; auto.
simpl; auto.
simpl; auto.
intros.
simpl in H.
change (removelast (a :: l)) with (removelast ((a::nil)++l)).
rewrite removelast_app.
simpl; f_equal; auto with arith.
intro H0; rewrite H0 in H; inversion_clear H; inversion_clear H1.
Qed.
End Cutting.
(**********************************************************************)
(** ** Predicate for List addition/removal (no need for decidability) *)
(**********************************************************************)
Section Add.
Variable A : Type.
(* [Add a l l'] means that [l'] is exactly [l], with [a] added
once somewhere *)
Inductive Add (a:A) : list A -> list A -> Prop :=
| Add_head l : Add a l (a::l)
| Add_cons x l l' : Add a l l' -> Add a (x::l) (x::l').
Lemma Add_app a l1 l2 : Add a (l1++l2) (l1++a::l2).
Proof.
induction l1; simpl; now constructor.
Qed.
Lemma Add_split a l l' :
Add a l l' -> exists l1 l2, l = l1++l2 /\ l' = l1++a::l2.
Proof.
induction 1.
- exists nil; exists l; split; trivial.
- destruct IHAdd as (l1 & l2 & Hl & Hl').
exists (x::l1); exists l2; split; simpl; f_equal; trivial.
Qed.
Lemma Add_in a l l' : Add a l l' ->
forall x, In x l' <-> In x (a::l).
Proof.
induction 1; intros; simpl in *; rewrite ?IHAdd; tauto.
Qed.
Lemma Add_length a l l' : Add a l l' -> length l' = S (length l).
Proof.
induction 1; simpl; auto with arith.
Qed.
Lemma Add_inv a l : In a l -> exists l', Add a l' l.
Proof.
intro Ha. destruct (in_split _ _ Ha) as (l1 & l2 & ->).
exists (l1 ++ l2). apply Add_app.
Qed.
Lemma incl_Add_inv a l u v :
~In a l -> incl (a::l) v -> Add a u v -> incl l u.
Proof.
intros Ha H AD y Hy.
assert (Hy' : In y (a::u)).
{ rewrite <- (Add_in AD). apply H; simpl; auto. }
destruct Hy'; [ subst; now elim Ha | trivial ].
Qed.
End Add.
(********************************)
(** ** Lists without redundancy *)
(********************************)
Section ReDun.
Variable A : Type.
Inductive NoDup : list A -> Prop :=
| NoDup_nil : NoDup nil
| NoDup_cons : forall x l, ~ In x l -> NoDup l -> NoDup (x::l).
Lemma NoDup_Add a l l' : Add a l l' -> (NoDup l' <-> NoDup l /\ ~In a l).
Proof.
induction 1 as [l|x l l' AD IH].
- split; [ inversion_clear 1; now split | now constructor ].
- split.
+ inversion_clear 1. rewrite IH in *. rewrite (Add_in AD) in *.
simpl in *; split; try constructor; intuition.
+ intros (N,IN). inversion_clear N. constructor.
* rewrite (Add_in AD); simpl in *; intuition.
* apply IH. split; trivial. simpl in *; intuition.
Qed.
Lemma NoDup_remove l l' a :
NoDup (l++a::l') -> NoDup (l++l') /\ ~In a (l++l').
Proof.
apply NoDup_Add. apply Add_app.
Qed.
Lemma NoDup_remove_1 l l' a : NoDup (l++a::l') -> NoDup (l++l').
Proof.
intros. now apply NoDup_remove with a.
Qed.
Lemma NoDup_remove_2 l l' a : NoDup (l++a::l') -> ~In a (l++l').
Proof.
intros. now apply NoDup_remove.
Qed.
Theorem NoDup_cons_iff a l:
NoDup (a::l) <-> ~ In a l /\ NoDup l.
Proof.
split.
+ inversion_clear 1. now split.
+ now constructor.
Qed.
(** Effective computation of a list without duplicates *)
Hypothesis decA: forall x y : A, {x = y} + {x <> y}.
Fixpoint nodup (l : list A) : list A :=
match l with
| [] => []
| x::xs => if in_dec decA x xs then nodup xs else x::(nodup xs)
end.
Lemma nodup_In l x : In x (nodup l) <-> In x l.
Proof.
induction l as [|a l' Hrec]; simpl.
- reflexivity.
- destruct (in_dec decA a l'); simpl; rewrite Hrec.
* intuition; now subst.
* reflexivity.
Qed.
Lemma NoDup_nodup l: NoDup (nodup l).
Proof.
induction l as [|a l' Hrec]; simpl.
- constructor.
- destruct (in_dec decA a l'); simpl.
* assumption.
* constructor; [ now rewrite nodup_In | assumption].
Qed.
Lemma nodup_inv k l a : nodup k = a :: l -> ~ In a l.
Proof.
intros H.
assert (H' : NoDup (a::l)).
{ rewrite <- H. apply NoDup_nodup. }
now inversion_clear H'.
Qed.
Theorem NoDup_count_occ l:
NoDup l <-> (forall x:A, count_occ decA l x <= 1).
Proof.
induction l as [| a l' Hrec].
- simpl; split; auto. constructor.
- rewrite NoDup_cons_iff, Hrec, (count_occ_not_In decA). clear Hrec. split.
+ intros (Ha, H) x. simpl. destruct (decA a x); auto.
subst; now rewrite Ha.
+ split.
* specialize (H a). rewrite count_occ_cons_eq in H; trivial.
now inversion H.
* intros x. specialize (H x). simpl in *. destruct (decA a x); auto.
now apply Nat.lt_le_incl.
Qed.
Theorem NoDup_count_occ' l:
NoDup l <-> (forall x:A, In x l -> count_occ decA l x = 1).
Proof.
rewrite NoDup_count_occ.
setoid_rewrite (count_occ_In decA). unfold gt, lt in *.
split; intros H x; specialize (H x);
set (n := count_occ decA l x) in *; clearbody n.
(* the rest would be solved by omega if we had it here... *)
- now apply Nat.le_antisymm.
- destruct (Nat.le_gt_cases 1 n); trivial.
+ rewrite H; trivial.
+ now apply Nat.lt_le_incl.
Qed.
(** Alternative characterisations of being without duplicates,
thanks to [nth_error] and [nth] *)
Lemma NoDup_nth_error l :
NoDup l <->
(forall i j, i<length l -> nth_error l i = nth_error l j -> i = j).
Proof.
split.
{ intros H; induction H as [|a l Hal Hl IH]; intros i j Hi E.
- inversion Hi.
- destruct i, j; simpl in *; auto.
* elim Hal. eapply nth_error_In; eauto.
* elim Hal. eapply nth_error_In; eauto.
* f_equal. apply IH; auto with arith. }
{ induction l as [|a l]; intros H; constructor.
* intro Ha. apply In_nth_error in Ha. destruct Ha as (n,Hn).
assert (n < length l) by (now rewrite <- nth_error_Some, Hn).
specialize (H 0 (S n)). simpl in H. discriminate H; auto with arith.
* apply IHl.
intros i j Hi E. apply eq_add_S, H; simpl; auto with arith. }
Qed.
Lemma NoDup_nth l d :
NoDup l <->
(forall i j, i<length l -> j<length l ->
nth i l d = nth j l d -> i = j).
Proof.
split.
{ intros H; induction H as [|a l Hal Hl IH]; intros i j Hi Hj E.
- inversion Hi.
- destruct i, j; simpl in *; auto.
* elim Hal. subst a. apply nth_In; auto with arith.
* elim Hal. subst a. apply nth_In; auto with arith.
* f_equal. apply IH; auto with arith. }
{ induction l as [|a l]; intros H; constructor.
* intro Ha. eapply In_nth in Ha. destruct Ha as (n & Hn & Hn').
specialize (H 0 (S n)). simpl in H. discriminate H; eauto with arith.
* apply IHl.
intros i j Hi Hj E. apply eq_add_S, H; simpl; auto with arith. }
Qed.
(** Having [NoDup] hypotheses bring more precise facts about [incl]. *)
Lemma NoDup_incl_length l l' :
NoDup l -> incl l l' -> length l <= length l'.
Proof.
intros N. revert l'. induction N as [|a l Hal N IH]; simpl.
- auto with arith.
- intros l' H.
destruct (Add_inv a l') as (l'', AD). { apply H; simpl; auto. }
rewrite (Add_length AD). apply le_n_S. apply IH.
now apply incl_Add_inv with a l'.
Qed.
Lemma NoDup_length_incl l l' :
NoDup l -> length l' <= length l -> incl l l' -> incl l' l.
Proof.
intros N. revert l'. induction N as [|a l Hal N IH].
- destruct l'; easy.
- intros l' E H x Hx.
destruct (Add_inv a l') as (l'', AD). { apply H; simpl; auto. }
rewrite (Add_in AD) in Hx. simpl in Hx.
destruct Hx as [Hx|Hx]; [left; trivial|right].
revert x Hx. apply (IH l''); trivial.
* apply le_S_n. now rewrite <- (Add_length AD).
* now apply incl_Add_inv with a l'.
Qed.
End ReDun.
(** NoDup and map *)
(** NB: the reciprocal result holds only for injective functions,
see FinFun.v *)
Lemma NoDup_map_inv A B (f:A->B) l : NoDup (map f l) -> NoDup l.
Proof.
induction l; simpl; inversion_clear 1; subst; constructor; auto.
intro H. now apply (in_map f) in H.
Qed.
(***********************************)
(** ** Sequence of natural numbers *)
(***********************************)
Section NatSeq.
(** [seq] computes the sequence of [len] contiguous integers
that starts at [start]. For instance, [seq 2 3] is [2::3::4::nil]. *)
Fixpoint seq (start len:nat) : list nat :=
match len with
| 0 => nil
| S len => start :: seq (S start) len
end.
Lemma seq_length : forall len start, length (seq start len) = len.
Proof.
induction len; simpl; auto.
Qed.
Lemma seq_nth : forall len start n d,
n < len -> nth n (seq start len) d = start+n.
Proof.
induction len; intros.
inversion H.
simpl seq.
destruct n; simpl.
auto with arith.
rewrite IHlen;simpl; auto with arith.
Qed.
Lemma seq_shift : forall len start,
map S (seq start len) = seq (S start) len.
Proof.
induction len; simpl; auto.
intros.
rewrite IHlen.
auto with arith.
Qed.
Lemma in_seq len start n :
In n (seq start len) <-> start <= n < start+len.
Proof.
revert start. induction len; simpl; intros.
- rewrite <- plus_n_O. split;[easy|].
intros (H,H'). apply (Lt.lt_irrefl _ (Lt.le_lt_trans _ _ _ H H')).
- rewrite IHlen, <- plus_n_Sm; simpl; split.
* intros [H|H]; subst; intuition auto with arith.
* intros (H,H'). destruct (Lt.le_lt_or_eq _ _ H); intuition.
Qed.
Lemma seq_NoDup len start : NoDup (seq start len).
Proof.
revert start; induction len; simpl; constructor; trivial.
rewrite in_seq. intros (H,_). apply (Lt.lt_irrefl _ H).
Qed.
Lemma seq_app : forall len1 len2 start,
seq start (len1 + len2) = seq start len1 ++ seq (start + len1) len2.
Proof.
induction len1 as [|len1' IHlen]; intros; simpl in *.
- now rewrite Nat.add_0_r.
- now rewrite Nat.add_succ_r, IHlen.
Qed.
End NatSeq.
Section Exists_Forall.
(** * Existential and universal predicates over lists *)
Variable A:Type.
Section One_predicate.
Variable P:A->Prop.
Inductive Exists : list A -> Prop :=
| Exists_cons_hd : forall x l, P x -> Exists (x::l)
| Exists_cons_tl : forall x l, Exists l -> Exists (x::l).
Hint Constructors Exists : core.
Lemma Exists_exists (l:list A) :
Exists l <-> (exists x, In x l /\ P x).
Proof.
split.
- induction 1; firstorder.
- induction l; firstorder; subst; auto.
Qed.
Lemma Exists_nil : Exists nil <-> False.
Proof. split; inversion 1. Qed.
Lemma Exists_cons x l:
Exists (x::l) <-> P x \/ Exists l.
Proof. split; inversion 1; auto. Qed.
Lemma Exists_dec l:
(forall x:A, {P x} + { ~ P x }) ->
{Exists l} + {~ Exists l}.
Proof.
intro Pdec. induction l as [|a l' Hrec].
- right. abstract now rewrite Exists_nil.
- destruct Hrec as [Hl'|Hl'].
* left. now apply Exists_cons_tl.
* destruct (Pdec a) as [Ha|Ha].
+ left. now apply Exists_cons_hd.
+ right. abstract now inversion 1.
Defined.
Inductive Forall : list A -> Prop :=
| Forall_nil : Forall nil
| Forall_cons : forall x l, P x -> Forall l -> Forall (x::l).
Hint Constructors Forall : core.
Lemma Forall_forall (l:list A):
Forall l <-> (forall x, In x l -> P x).
Proof.
split.
- induction 1; firstorder; subst; auto.
- induction l; firstorder.
Qed.
Lemma Forall_inv : forall (a:A) l, Forall (a :: l) -> P a.
Proof.
intros; inversion H; trivial.
Qed.
Lemma Forall_rect : forall (Q : list A -> Type),
Q [] -> (forall b l, P b -> Q (b :: l)) -> forall l, Forall l -> Q l.
Proof.
intros Q H H'; induction l; intro; [|eapply H', Forall_inv]; eassumption.
Qed.
Lemma Forall_dec :
(forall x:A, {P x} + { ~ P x }) ->
forall l:list A, {Forall l} + {~ Forall l}.
Proof.
intro Pdec. induction l as [|a l' Hrec].
- left. apply Forall_nil.
- destruct Hrec as [Hl'|Hl'].
+ destruct (Pdec a) as [Ha|Ha].
* left. now apply Forall_cons.
* right. abstract now inversion 1.
+ right. abstract now inversion 1.
Defined.
End One_predicate.
Theorem Forall_inv_tail
: forall (P : A -> Prop) (x0 : A) (xs : list A), Forall P (x0 :: xs) -> Forall P xs.
Proof.
intros P x0 xs H.
apply Forall_forall with (l := xs).
assert (H0 : forall x : A, In x (x0 :: xs) -> P x).
apply Forall_forall with (P := P) (l := x0 :: xs).
exact H.
assert (H1 : forall (x : A) (H2 : In x xs), P x).
intros x H2.
apply (H0 x).
right.
exact H2.
intros x H2.
apply (H1 x H2).
Qed.
Theorem Exists_impl
: forall (P Q : A -> Prop), (forall x : A, P x -> Q x) -> forall xs : list A, Exists P xs -> Exists Q xs.
Proof.
intros P Q H xs H0.
induction H0.
apply (Exists_cons_hd Q x l (H x H0)).
apply (Exists_cons_tl x IHExists).
Qed.
Lemma Forall_Exists_neg (P:A->Prop)(l:list A) :
Forall (fun x => ~ P x) l <-> ~(Exists P l).
Proof.
rewrite Forall_forall, Exists_exists. firstorder.
Qed.
Lemma Exists_Forall_neg (P:A->Prop)(l:list A) :
(forall x, P x \/ ~P x) ->
Exists (fun x => ~ P x) l <-> ~(Forall P l).
Proof.
intro Dec.
split.
- rewrite Forall_forall, Exists_exists; firstorder.
- intros NF.
induction l as [|a l IH].
+ destruct NF. constructor.
+ destruct (Dec a) as [Ha|Ha].
* apply Exists_cons_tl, IH. contradict NF. now constructor.
* now apply Exists_cons_hd.
Qed.
Lemma neg_Forall_Exists_neg (P:A->Prop) (l:list A) :
(forall x:A, {P x} + { ~ P x }) ->
~ Forall P l ->
Exists (fun x => ~ P x) l.
Proof.
intro Dec.
apply Exists_Forall_neg; intros.
destruct (Dec x); auto.
Qed.
Lemma Forall_Exists_dec (P:A->Prop) :
(forall x:A, {P x} + { ~ P x }) ->
forall l:list A,
{Forall P l} + {Exists (fun x => ~ P x) l}.
Proof.
intros Pdec l.
destruct (Forall_dec P Pdec l); [left|right]; trivial.
now apply neg_Forall_Exists_neg.
Defined.
Lemma Forall_impl : forall (P Q : A -> Prop), (forall a, P a -> Q a) ->
forall l, Forall P l -> Forall Q l.
Proof.
intros P Q H l. rewrite !Forall_forall. firstorder.
Qed.
End Exists_Forall.
Hint Constructors Exists : core.
Hint Constructors Forall : core.
Section Forall2.
(** [Forall2]: stating that elements of two lists are pairwise related. *)
Variables A B : Type.
Variable R : A -> B -> Prop.
Inductive Forall2 : list A -> list B -> Prop :=
| Forall2_nil : Forall2 [] []
| Forall2_cons : forall x y l l',
R x y -> Forall2 l l' -> Forall2 (x::l) (y::l').
Hint Constructors Forall2 : core.
Theorem Forall2_refl : Forall2 [] [].
Proof. intros; apply Forall2_nil. Qed.
Theorem Forall2_app_inv_l : forall l1 l2 l',
Forall2 (l1 ++ l2) l' ->
exists l1' l2', Forall2 l1 l1' /\ Forall2 l2 l2' /\ l' = l1' ++ l2'.
Proof.
induction l1; intros.
exists [], l'; auto.
simpl in H; inversion H; subst; clear H.
apply IHl1 in H4 as (l1' & l2' & Hl1 & Hl2 & ->).
exists (y::l1'), l2'; simpl; auto.
Qed.
Theorem Forall2_app_inv_r : forall l1' l2' l,
Forall2 l (l1' ++ l2') ->
exists l1 l2, Forall2 l1 l1' /\ Forall2 l2 l2' /\ l = l1 ++ l2.
Proof.
induction l1'; intros.
exists [], l; auto.
simpl in H; inversion H; subst; clear H.
apply IHl1' in H4 as (l1 & l2 & Hl1 & Hl2 & ->).
exists (x::l1), l2; simpl; auto.
Qed.
Theorem Forall2_app : forall l1 l2 l1' l2',
Forall2 l1 l1' -> Forall2 l2 l2' -> Forall2 (l1 ++ l2) (l1' ++ l2').
Proof.
intros. induction l1 in l1', H, H0 |- *; inversion H; subst; simpl; auto.
Qed.
End Forall2.
Hint Constructors Forall2 : core.
Section ForallPairs.
(** [ForallPairs] : specifies that a certain relation should
always hold when inspecting all possible pairs of elements of a list. *)
Variable A : Type.
Variable R : A -> A -> Prop.
Definition ForallPairs l :=
forall a b, In a l -> In b l -> R a b.
(** [ForallOrdPairs] : we still check a relation over all pairs
of elements of a list, but now the order of elements matters. *)
Inductive ForallOrdPairs : list A -> Prop :=
| FOP_nil : ForallOrdPairs nil
| FOP_cons : forall a l,
Forall (R a) l -> ForallOrdPairs l -> ForallOrdPairs (a::l).
Hint Constructors ForallOrdPairs : core.
Lemma ForallOrdPairs_In : forall l,
ForallOrdPairs l ->
forall x y, In x l -> In y l -> x=y \/ R x y \/ R y x.
Proof.
induction 1.
inversion 1.
simpl; destruct 1; destruct 1; subst; auto.
right; left. apply -> Forall_forall; eauto.
right; right. apply -> Forall_forall; eauto.
Qed.
(** [ForallPairs] implies [ForallOrdPairs]. The reverse implication is true
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.119 Sekunden
(vorverarbeitet)
¤
|
schauen Sie vor die Tür
Fenster
Die Firma ist wie angegeben erreichbar.
Die farbliche Syntaxdarstellung ist noch experimentell.
|