(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * MSetGenTree : sets via generic trees
This module factorizes common parts in implementations
of finite sets as AVL trees and as Red-Black trees. The nodes
of the trees defined here include an generic information
parameter, that will be the height in AVL trees and the color
in Red-Black trees. Without more details here about these
information parameters, trees here are not known to be
well-balanced, but simply binary-search-trees.
The operations we could define and prove correct here are the
one that do not build non-empty trees, but only analyze them :
- empty is_empty
- mem
- compare equal subset
- fold cardinal elements
- for_all exists_
- min_elt max_elt choose
*)
Require Import FunInd Orders OrdersFacts MSetInterface PeanoNat.
Local Open Scope list_scope.
Local Open Scope lazy_bool_scope.
(* For nicer extraction, we create induction principles
only when needed *)
Local Unset Elimination Schemes.
Module Type InfoTyp.
Parameter t : Set.
End InfoTyp.
(** * Ops : the pure functions *)
Module Type Ops (X:OrderedType)(Info:InfoTyp).
Definition elt := X.t.
Hint Transparent elt : core.
Inductive tree : Type :=
| Leaf : tree
| Node : Info.t -> tree -> X.t -> tree -> tree.
(** ** The empty set and emptyness test *)
Definition empty := Leaf.
Definition is_empty t :=
match t with
| Leaf => true
| _ => false
end.
(** ** Membership test *)
(** The [mem] function is deciding membership. It exploits the
binary search tree invariant to achieve logarithmic complexity. *)
Fixpoint mem x t :=
match t with
| Leaf => false
| Node _ l k r =>
match X.compare x k with
| Lt => mem x l
| Eq => true
| Gt => mem x r
end
end.
(** ** Minimal, maximal, arbitrary elements *)
Fixpoint min_elt (t : tree) : option elt :=
match t with
| Leaf => None
| Node _ Leaf x r => Some x
| Node _ l x r => min_elt l
end.
Fixpoint max_elt (t : tree) : option elt :=
match t with
| Leaf => None
| Node _ l x Leaf => Some x
| Node _ l x r => max_elt r
end.
Definition choose := min_elt.
(** ** Iteration on elements *)
Fixpoint fold {A: Type} (f: elt -> A -> A) (t: tree) (base: A) : A :=
match t with
| Leaf => base
| Node _ l x r => fold f r (f x (fold f l base))
end.
Fixpoint elements_aux acc s :=
match s with
| Leaf => acc
| Node _ l x r => elements_aux (x :: elements_aux acc r) l
end.
Definition elements := elements_aux nil.
Fixpoint rev_elements_aux acc s :=
match s with
| Leaf => acc
| Node _ l x r => rev_elements_aux (x :: rev_elements_aux acc l) r
end.
Definition rev_elements := rev_elements_aux nil.
Fixpoint cardinal (s : tree) : nat :=
match s with
| Leaf => 0
| Node _ l _ r => S (cardinal l + cardinal r)
end.
Fixpoint maxdepth s :=
match s with
| Leaf => 0
| Node _ l _ r => S (max (maxdepth l) (maxdepth r))
end.
Fixpoint mindepth s :=
match s with
| Leaf => 0
| Node _ l _ r => S (min (mindepth l) (mindepth r))
end.
(** ** Testing universal or existential properties. *)
(** We do not use the standard boolean operators of Coq,
but lazy ones. *)
Fixpoint for_all (f:elt->bool) s := match s with
| Leaf => true
| Node _ l x r => f x &&& for_all f l &&& for_all f r
end.
Fixpoint exists_ (f:elt->bool) s := match s with
| Leaf => false
| Node _ l x r => f x ||| exists_ f l ||| exists_ f r
end.
(** ** Comparison of trees *)
(** The algorithm here has been suggested by Xavier Leroy,
and transformed into c.p.s. by Benjamin Grégoire.
The original ocaml code (with non-structural recursive calls)
has also been formalized (thanks to Function+measure), see
[ocaml_compare] in [MSetFullAVL]. The following code with
continuations computes dramatically faster in Coq, and
should be almost as efficient after extraction.
*)
(** Enumeration of the elements of a tree. This corresponds
to the "samefringe" notion in the literature. *)
Inductive enumeration :=
| End : enumeration
| More : elt -> tree -> enumeration -> enumeration.
(** [cons t e] adds the elements of tree [t] on the head of
enumeration [e]. *)
Fixpoint cons s e : enumeration :=
match s with
| Leaf => e
| Node _ l x r => cons l (More x r e)
end.
(** One step of comparison of elements *)
Definition compare_more x1 (cont:enumeration->comparison) e2 :=
match e2 with
| End => Gt
| More x2 r2 e2 =>
match X.compare x1 x2 with
| Eq => cont (cons r2 e2)
| Lt => Lt
| Gt => Gt
end
end.
(** Comparison of left tree, middle element, then right tree *)
Fixpoint compare_cont s1 (cont:enumeration->comparison) e2 :=
match s1 with
| Leaf => cont e2
| Node _ l1 x1 r1 =>
compare_cont l1 (compare_more x1 (compare_cont r1 cont)) e2
end.
(** Initial continuation *)
Definition compare_end e2 :=
match e2 with End => Eq | _ => Lt end.
(** The complete comparison *)
Definition compare s1 s2 := compare_cont s1 compare_end (cons s2 End).
Definition equal s1 s2 :=
match compare s1 s2 with Eq => true | _ => false end.
(** ** Subset test *)
(** In ocaml, recursive calls are made on "half-trees" such as
(Node _ l1 x1 Leaf) and (Node _ Leaf x1 r1). Instead of these
non-structural calls, we propose here two specialized functions
for these situations. This version should be almost as efficient
as the one of ocaml (closures as arguments may slow things a bit),
it is simply less compact. The exact ocaml version has also been
formalized (thanks to Function+measure), see [ocaml_subset] in
[MSetFullAVL].
*)
Fixpoint subsetl (subset_l1 : tree -> bool) x1 s2 : bool :=
match s2 with
| Leaf => false
| Node _ l2 x2 r2 =>
match X.compare x1 x2 with
| Eq => subset_l1 l2
| Lt => subsetl subset_l1 x1 l2
| Gt => mem x1 r2 &&& subset_l1 s2
end
end.
Fixpoint subsetr (subset_r1 : tree -> bool) x1 s2 : bool :=
match s2 with
| Leaf => false
| Node _ l2 x2 r2 =>
match X.compare x1 x2 with
| Eq => subset_r1 r2
| Lt => mem x1 l2 &&& subset_r1 s2
| Gt => subsetr subset_r1 x1 r2
end
end.
Fixpoint subset s1 s2 : bool := match s1, s2 with
| Leaf, _ => true
| Node _ _ _ _, Leaf => false
| Node _ l1 x1 r1, Node _ l2 x2 r2 =>
match X.compare x1 x2 with
| Eq => subset l1 l2 &&& subset r1 r2
| Lt => subsetl (subset l1) x1 l2 &&& subset r1 s2
| Gt => subsetr (subset r1) x1 r2 &&& subset l1 s2
end
end.
End Ops.
(** * Props : correctness proofs of these generic operations *)
Module Type Props (X:OrderedType)(Info:InfoTyp)(Import M:Ops X Info).
(** ** Occurrence in a tree *)
Inductive InT (x : elt) : tree -> Prop :=
| IsRoot : forall c l r y, X.eq x y -> InT x (Node c l y r)
| InLeft : forall c l r y, InT x l -> InT x (Node c l y r)
| InRight : forall c l r y, InT x r -> InT x (Node c l y r).
Definition In := InT.
(** ** Some shortcuts *)
Definition Equal s s' := forall a : elt, InT a s <-> InT a s'.
Definition Subset s s' := forall a : elt, InT a s -> InT a s'.
Definition Empty s := forall a : elt, ~ InT a s.
Definition For_all (P : elt -> Prop) s := forall x, InT x s -> P x.
Definition Exists (P : elt -> Prop) s := exists x, InT x s /\ P x.
(** ** Binary search trees *)
(** [lt_tree x s]: all elements in [s] are smaller than [x]
(resp. greater for [gt_tree]) *)
Definition lt_tree x s := forall y, InT y s -> X.lt y x.
Definition gt_tree x s := forall y, InT y s -> X.lt x y.
(** [bst t] : [t] is a binary search tree *)
Inductive bst : tree -> Prop :=
| BSLeaf : bst Leaf
| BSNode : forall c x l r, bst l -> bst r ->
lt_tree x l -> gt_tree x r -> bst (Node c l x r).
(** [bst] is the (decidable) invariant our trees will have to satisfy. *)
Definition IsOk := bst.
Class Ok (s:tree) : Prop := ok : bst s.
Instance bst_Ok s (Hs : bst s) : Ok s := { ok := Hs }.
Fixpoint ltb_tree x s :=
match s with
| Leaf => true
| Node _ l y r =>
match X.compare x y with
| Gt => ltb_tree x l && ltb_tree x r
| _ => false
end
end.
Fixpoint gtb_tree x s :=
match s with
| Leaf => true
| Node _ l y r =>
match X.compare x y with
| Lt => gtb_tree x l && gtb_tree x r
| _ => false
end
end.
Fixpoint isok s :=
match s with
| Leaf => true
| Node _ l x r => isok l && isok r && ltb_tree x l && gtb_tree x r
end.
(** ** Known facts about ordered types *)
Module Import MX := OrderedTypeFacts X.
(** ** Automation and dedicated tactics *)
Scheme tree_ind := Induction for tree Sort Prop.
Scheme bst_ind := Induction for bst Sort Prop.
Local Hint Resolve MX.eq_refl MX.eq_trans MX.lt_trans ok : core.
Local Hint Immediate MX.eq_sym : core.
Local Hint Unfold In lt_tree gt_tree : core.
Local Hint Constructors InT bst : core.
Local Hint Unfold Ok : core.
(** Automatic treatment of [Ok] hypothesis *)
Ltac clear_inversion H := inversion H; clear H; subst.
Ltac inv_ok := match goal with
| H:Ok (Node _ _ _ _) |- _ => clear_inversion H; inv_ok
| H:Ok Leaf |- _ => clear H; inv_ok
| H:bst ?x |- _ => change (Ok x) in H; inv_ok
| _ => idtac
end.
(** A tactic to repeat [inversion_clear] on all hyps of the
form [(f (Node _ _ _ _))] *)
Ltac is_tree_constr c :=
match c with
| Leaf => idtac
| Node _ _ _ _ => idtac
| _ => fail
end.
Ltac invtree f :=
match goal with
| H:f ?s |- _ => is_tree_constr s; clear_inversion H; invtree f
| H:f _ ?s |- _ => is_tree_constr s; clear_inversion H; invtree f
| H:f _ _ ?s |- _ => is_tree_constr s; clear_inversion H; invtree f
| _ => idtac
end.
Ltac inv := inv_ok; invtree InT.
Ltac intuition_in := repeat (intuition; inv).
(** Helper tactic concerning order of elements. *)
Ltac order := match goal with
| U: lt_tree _ ?s, V: InT _ ?s |- _ => generalize (U _ V); clear U; order
| U: gt_tree _ ?s, V: InT _ ?s |- _ => generalize (U _ V); clear U; order
| _ => MX.order
end.
(** [isok] is indeed a decision procedure for [Ok] *)
Lemma ltb_tree_iff : forall x s, lt_tree x s <-> ltb_tree x s = true.
Proof.
induction s as [|c l IHl y r IHr]; simpl.
unfold lt_tree; intuition_in.
elim_compare x y.
split; intros; try discriminate. assert (X.lt y x) by auto. order.
split; intros; try discriminate. assert (X.lt y x) by auto. order.
rewrite !andb_true_iff, <-IHl, <-IHr.
unfold lt_tree; intuition_in; order.
Qed.
Lemma gtb_tree_iff : forall x s, gt_tree x s <-> gtb_tree x s = true.
Proof.
induction s as [|c l IHl y r IHr]; simpl.
unfold gt_tree; intuition_in.
elim_compare x y.
split; intros; try discriminate. assert (X.lt x y) by auto. order.
rewrite !andb_true_iff, <-IHl, <-IHr.
unfold gt_tree; intuition_in; order.
split; intros; try discriminate. assert (X.lt x y) by auto. order.
Qed.
Lemma isok_iff : forall s, Ok s <-> isok s = true.
Proof.
induction s as [|c l IHl y r IHr]; simpl.
intuition_in.
rewrite !andb_true_iff, <- IHl, <-IHr, <- ltb_tree_iff, <- gtb_tree_iff.
intuition_in.
Qed.
Instance isok_Ok s : isok s = true -> Ok s | 10.
Proof. intros; apply <- isok_iff; auto. Qed.
(** ** Basic results about [In] *)
Lemma In_1 :
forall s x y, X.eq x y -> InT x s -> InT y s.
Proof.
induction s; simpl; intuition_in; eauto.
Qed.
Local Hint Immediate In_1 : core.
Instance In_compat : Proper (X.eq==>eq==>iff) InT.
Proof.
apply proper_sym_impl_iff_2; auto with *.
repeat red; intros; subst. apply In_1 with x; auto.
Qed.
Lemma In_node_iff :
forall c l x r y,
InT y (Node c l x r) <-> InT y l \/ X.eq y x \/ InT y r.
Proof.
intuition_in.
Qed.
Lemma In_leaf_iff : forall x, InT x Leaf <-> False.
Proof.
intuition_in.
Qed.
(** Results about [lt_tree] and [gt_tree] *)
Lemma lt_leaf : forall x : elt, lt_tree x Leaf.
Proof.
red; inversion 1.
Qed.
Lemma gt_leaf : forall x : elt, gt_tree x Leaf.
Proof.
red; inversion 1.
Qed.
Lemma lt_tree_node :
forall (x y : elt) (l r : tree) (i : Info.t),
lt_tree x l -> lt_tree x r -> X.lt y x -> lt_tree x (Node i l y r).
Proof.
unfold lt_tree; intuition_in; order.
Qed.
Lemma gt_tree_node :
forall (x y : elt) (l r : tree) (i : Info.t),
gt_tree x l -> gt_tree x r -> X.lt x y -> gt_tree x (Node i l y r).
Proof.
unfold gt_tree; intuition_in; order.
Qed.
Local Hint Resolve lt_leaf gt_leaf lt_tree_node gt_tree_node : core.
Lemma lt_tree_not_in :
forall (x : elt) (t : tree), lt_tree x t -> ~ InT x t.
Proof.
intros; intro; order.
Qed.
Lemma lt_tree_trans :
forall x y, X.lt x y -> forall t, lt_tree x t -> lt_tree y t.
Proof.
eauto.
Qed.
Lemma gt_tree_not_in :
forall (x : elt) (t : tree), gt_tree x t -> ~ InT x t.
Proof.
intros; intro; order.
Qed.
Lemma gt_tree_trans :
forall x y, X.lt y x -> forall t, gt_tree x t -> gt_tree y t.
Proof.
eauto.
Qed.
Instance lt_tree_compat : Proper (X.eq ==> Logic.eq ==> iff) lt_tree.
Proof.
apply proper_sym_impl_iff_2; auto.
intros x x' Hx s s' Hs H y Hy. subst. setoid_rewrite <- Hx; auto.
Qed.
Instance gt_tree_compat : Proper (X.eq ==> Logic.eq ==> iff) gt_tree.
Proof.
apply proper_sym_impl_iff_2; auto.
intros x x' Hx s s' Hs H y Hy. subst. setoid_rewrite <- Hx; auto.
Qed.
Local Hint Resolve lt_tree_not_in lt_tree_trans gt_tree_not_in gt_tree_trans : core.
Ltac induct s x :=
induction s as [|i l IHl x' r IHr]; simpl; intros;
[|elim_compare x x'; intros; inv].
Ltac auto_tc := auto with typeclass_instances.
Ltac ok :=
inv; change bst with Ok in *;
match goal with
| |- Ok (Node _ _ _ _) => constructor; auto_tc; ok
| |- lt_tree _ (Node _ _ _ _) => apply lt_tree_node; ok
| |- gt_tree _ (Node _ _ _ _) => apply gt_tree_node; ok
| _ => eauto with typeclass_instances
end.
(** ** Empty set *)
Lemma empty_spec : Empty empty.
Proof.
intros x H. inversion H.
Qed.
Instance empty_ok : Ok empty.
Proof.
auto.
Qed.
(** ** Emptyness test *)
Lemma is_empty_spec : forall s, is_empty s = true <-> Empty s.
Proof.
destruct s as [|c r x l]; simpl; auto.
- split; auto. intros _ x H. inv.
- split; auto. try discriminate. intro H; elim (H x); auto.
Qed.
(** ** Membership *)
Lemma mem_spec : forall s x `{Ok s}, mem x s = true <-> InT x s.
Proof.
split.
- induct s x; now auto.
- induct s x; intuition_in; order.
Qed.
(** ** Minimal and maximal elements *)
Functional Scheme min_elt_ind := Induction for min_elt Sort Prop.
Functional Scheme max_elt_ind := Induction for max_elt Sort Prop.
Lemma min_elt_spec1 s x : min_elt s = Some x -> InT x s.
Proof.
functional induction (min_elt s); auto; inversion 1; auto.
Qed.
Lemma min_elt_spec2 s x y `{Ok s} :
min_elt s = Some x -> InT y s -> ~ X.lt y x.
Proof.
revert y.
functional induction (min_elt s);
try rename _x0 into r; try rename _x2 into l1, _x3 into x1, _x4 into r1.
- discriminate.
- intros y V W.
inversion V; clear V; subst.
inv; order.
- intros; inv; auto.
* assert (X.lt x x0) by (apply H8; apply min_elt_spec1; auto).
order.
* assert (X.lt x1 x0) by auto.
assert (~X.lt x1 x) by auto.
order.
Qed.
Lemma min_elt_spec3 s : min_elt s = None -> Empty s.
Proof.
functional induction (min_elt s).
red; red; inversion 2.
inversion 1.
intro H0.
destruct (IHo H0 _x3); auto.
Qed.
Lemma max_elt_spec1 s x : max_elt s = Some x -> InT x s.
Proof.
functional induction (max_elt s); auto; inversion 1; auto.
Qed.
Lemma max_elt_spec2 s x y `{Ok s} :
max_elt s = Some x -> InT y s -> ~ X.lt x y.
Proof.
revert y.
functional induction (max_elt s);
try rename _x0 into r; try rename _x2 into l1, _x3 into x1, _x4 into r1.
- discriminate.
- intros y V W.
inversion V; clear V; subst.
inv; order.
- intros; inv; auto.
* assert (X.lt x0 x) by (apply H9; apply max_elt_spec1; auto).
order.
* assert (X.lt x0 x1) by auto.
assert (~X.lt x x1) by auto.
order.
Qed.
Lemma max_elt_spec3 s : max_elt s = None -> Empty s.
Proof.
functional induction (max_elt s).
red; red; inversion 2.
inversion 1.
intro H0.
destruct (IHo H0 _x3); auto.
Qed.
Lemma choose_spec1 : forall s x, choose s = Some x -> InT x s.
Proof.
exact min_elt_spec1.
Qed.
Lemma choose_spec2 : forall s, choose s = None -> Empty s.
Proof.
exact min_elt_spec3.
Qed.
Lemma choose_spec3 : forall s s' x x' `{Ok s, Ok s'},
choose s = Some x -> choose s' = Some x' ->
Equal s s' -> X.eq x x'.
Proof.
unfold choose, Equal; intros s s' x x' Hb Hb' Hx Hx' H.
assert (~X.lt x x').
apply min_elt_spec2 with s'; auto.
rewrite <-H; auto using min_elt_spec1.
assert (~X.lt x' x).
apply min_elt_spec2 with s; auto.
rewrite H; auto using min_elt_spec1.
elim_compare x x'; intuition.
Qed.
(** ** Elements *)
Lemma elements_spec1' : forall s acc x,
InA X.eq x (elements_aux acc s) <-> InT x s \/ InA X.eq x acc.
Proof.
induction s as [ | c l Hl x r Hr ]; simpl; auto.
intuition.
inversion H0.
intros.
rewrite Hl.
destruct (Hr acc x0); clear Hl Hr.
intuition; inversion_clear H3; intuition.
Qed.
Lemma elements_spec1 : forall s x, InA X.eq x (elements s) <-> InT x s.
Proof.
intros; generalize (elements_spec1' s nil x); intuition.
inversion_clear H0.
Qed.
Lemma elements_spec2' : forall s acc `{Ok s}, sort X.lt acc ->
(forall x y : elt, InA X.eq x acc -> InT y s -> X.lt y x) ->
sort X.lt (elements_aux acc s).
Proof.
induction s as [ | c l Hl y r Hr]; simpl; intuition.
inv.
apply Hl; auto.
constructor.
apply Hr; auto.
eapply InA_InfA; eauto with *.
intros.
destruct (elements_spec1' r acc y0); intuition.
intros.
inversion_clear H.
order.
destruct (elements_spec1' r acc x); intuition eauto.
Qed.
Lemma elements_spec2 : forall s `(Ok s), sort X.lt (elements s).
Proof.
intros; unfold elements; apply elements_spec2'; auto.
intros; inversion H0.
Qed.
Local Hint Resolve elements_spec2 : core.
Lemma elements_spec2w : forall s `(Ok s), NoDupA X.eq (elements s).
Proof.
intros. eapply SortA_NoDupA; eauto with *.
Qed.
Lemma elements_aux_cardinal :
forall s acc, (length acc + cardinal s)%nat = length (elements_aux acc s).
Proof.
simple induction s; simpl; intuition.
rewrite <- H.
simpl.
rewrite <- H0. rewrite (Nat.add_comm (cardinal t0)).
now rewrite <- Nat.add_succ_r, Nat.add_assoc.
Qed.
Lemma elements_cardinal : forall s : tree, cardinal s = length (elements s).
Proof.
exact (fun s => elements_aux_cardinal s nil).
Qed.
Definition cardinal_spec (s:tree)(Hs:Ok s) := elements_cardinal s.
Lemma elements_app :
forall s acc, elements_aux acc s = elements s ++ acc.
Proof.
induction s; simpl; intros; auto.
rewrite IHs1, IHs2.
unfold elements; simpl.
rewrite 2 IHs1, IHs2, !app_nil_r, !app_ass; auto.
Qed.
Lemma elements_node c l x r :
elements (Node c l x r) = elements l ++ x :: elements r.
Proof.
unfold elements; simpl.
now rewrite !elements_app, !app_nil_r.
Qed.
Lemma rev_elements_app :
forall s acc, rev_elements_aux acc s = rev_elements s ++ acc.
Proof.
induction s; simpl; intros; auto.
rewrite IHs1, IHs2.
unfold rev_elements; simpl.
rewrite IHs1, 2 IHs2, !app_nil_r, !app_ass; auto.
Qed.
Lemma rev_elements_node c l x r :
rev_elements (Node c l x r) = rev_elements r ++ x :: rev_elements l.
Proof.
unfold rev_elements; simpl.
now rewrite !rev_elements_app, !app_nil_r.
Qed.
Lemma rev_elements_rev s : rev_elements s = rev (elements s).
Proof.
induction s as [|c l IHl x r IHr]; trivial.
rewrite elements_node, rev_elements_node, IHl, IHr, rev_app_distr.
simpl. now rewrite !app_ass.
Qed.
(** The converse of [elements_spec2], used in MSetRBT *)
(* TODO: TO MIGRATE ELSEWHERE... *)
Lemma sorted_app_inv l1 l2 :
sort X.lt (l1++l2) ->
sort X.lt l1 /\ sort X.lt l2 /\
forall x1 x2, InA X.eq x1 l1 -> InA X.eq x2 l2 -> X.lt x1 x2.
Proof.
induction l1 as [|a1 l1 IHl1].
- simpl; repeat split; auto.
intros. now rewrite InA_nil in *.
- simpl. inversion_clear 1 as [ | ? ? Hs Hhd ].
destruct (IHl1 Hs) as (H1 & H2 & H3).
repeat split.
* constructor; auto.
destruct l1; simpl in *; auto; inversion_clear Hhd; auto.
* trivial.
* intros x1 x2 Hx1 Hx2. rewrite InA_cons in Hx1. destruct Hx1.
+ rewrite H.
apply SortA_InfA_InA with (eqA:=X.eq)(l:=l1++l2); auto_tc.
rewrite InA_app_iff; auto_tc.
+ auto.
Qed.
Lemma elements_sort_ok s : sort X.lt (elements s) -> Ok s.
Proof.
induction s as [|c l IHl x r IHr].
- auto.
- rewrite elements_node.
intros H. destruct (sorted_app_inv _ _ H) as (H1 & H2 & H3).
inversion_clear H2.
constructor; ok.
* intros y Hy. apply H3.
+ now rewrite elements_spec1.
+ rewrite InA_cons. now left.
* intros y Hy.
apply SortA_InfA_InA with (eqA:=X.eq)(l:=elements r); auto_tc.
now rewrite elements_spec1.
Qed.
(** ** [for_all] and [exists] *)
Lemma for_all_spec s f : Proper (X.eq==>eq) f ->
(for_all f s = true <-> For_all (fun x => f x = true) s).
Proof.
intros Hf; unfold For_all.
induction s as [|i l IHl x r IHr]; simpl; auto.
- split; intros; inv; auto.
- rewrite <- !andb_lazy_alt, !andb_true_iff, IHl, IHr. clear IHl IHr.
intuition_in. eauto.
Qed.
Lemma exists_spec s f : Proper (X.eq==>eq) f ->
(exists_ f s = true <-> Exists (fun x => f x = true) s).
Proof.
intros Hf; unfold Exists.
induction s as [|i l IHl x r IHr]; simpl; auto.
- split.
* discriminate.
* intros (y,(H,_)); inv.
- rewrite <- !orb_lazy_alt, !orb_true_iff, IHl, IHr. clear IHl IHr.
split; [intros [[H|(y,(H,H'))]|(y,(H,H'))]|intros (y,(H,H'))].
* exists x; auto.
* exists y; auto.
* exists y; auto.
* inv; [left;left|left;right|right]; try (exists y); eauto.
Qed.
(** ** Fold *)
Lemma fold_spec' {A} (f : elt -> A -> A) (s : tree) (i : A) (acc : list elt) :
fold_left (flip f) (elements_aux acc s) i = fold_left (flip f) acc (fold f s i).
Proof.
revert i acc.
induction s as [|c l IHl x r IHr]; simpl; intros; auto.
rewrite IHl.
simpl. unfold flip at 2.
apply IHr.
Qed.
Lemma fold_spec (s:tree) {A} (i : A) (f : elt -> A -> A) :
fold f s i = fold_left (flip f) (elements s) i.
Proof.
revert i. unfold elements.
induction s as [|c l IHl x r IHr]; simpl; intros; auto.
rewrite fold_spec'.
rewrite IHr.
simpl; auto.
Qed.
(** ** Subset *)
Lemma subsetl_spec : forall subset_l1 l1 x1 c1 s2
`{Ok (Node c1 l1 x1 Leaf), Ok s2},
(forall s `{Ok s}, (subset_l1 s = true <-> Subset l1 s)) ->
(subsetl subset_l1 x1 s2 = true <-> Subset (Node c1 l1 x1 Leaf) s2 ).
Proof.
induction s2 as [|c2 l2 IHl2 x2 r2 IHr2]; simpl; intros.
unfold Subset; intuition; try discriminate.
assert (H': InT x1 Leaf) by auto; inversion H'.
specialize (IHl2 H).
specialize (IHr2 H).
inv.
elim_compare x1 x2.
rewrite H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
assert (X.eq a x2) by order; intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite IHl2 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite <-andb_lazy_alt, andb_true_iff, H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
constructor 3. setoid_replace a with x1; auto. rewrite <- mem_spec; auto.
rewrite mem_spec; auto.
assert (InT x1 (Node c2 l2 x2 r2)) by auto; intuition_in; order.
Qed.
Lemma subsetr_spec : forall subset_r1 r1 x1 c1 s2,
bst (Node c1 Leaf x1 r1) -> bst s2 ->
(forall s, bst s -> (subset_r1 s = true <-> Subset r1 s)) ->
(subsetr subset_r1 x1 s2 = true <-> Subset (Node c1 Leaf x1 r1) s2).
Proof.
induction s2 as [|c2 l2 IHl2 x2 r2 IHr2]; simpl; intros.
unfold Subset; intuition; try discriminate.
assert (H': InT x1 Leaf) by auto; inversion H'.
specialize (IHl2 H).
specialize (IHr2 H).
inv.
elim_compare x1 x2.
rewrite H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
assert (X.eq a x2) by order; intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite <-andb_lazy_alt, andb_true_iff, H1 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
constructor 2. setoid_replace a with x1; auto. rewrite <- mem_spec; auto.
rewrite mem_spec; auto.
assert (InT x1 (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite IHr2 by auto; clear H1 IHl2 IHr2.
unfold Subset. intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
Qed.
Lemma subset_spec : forall s1 s2 `{Ok s1, Ok s2},
(subset s1 s2 = true <-> Subset s1 s2).
Proof.
induction s1 as [|c1 l1 IHl1 x1 r1 IHr1]; simpl; intros.
unfold Subset; intuition_in.
destruct s2 as [|c2 l2 x2 r2]; simpl; intros.
unfold Subset; intuition_in; try discriminate.
assert (H': InT x1 Leaf) by auto; inversion H'.
inv.
elim_compare x1 x2.
rewrite <-andb_lazy_alt, andb_true_iff, IHl1, IHr1 by auto.
clear IHl1 IHr1.
unfold Subset; intuition_in.
assert (X.eq a x2) by order; intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite <-andb_lazy_alt, andb_true_iff, IHr1 by auto.
rewrite (@subsetl_spec (subset l1) l1 x1 c1) by auto.
clear IHl1 IHr1.
unfold Subset; intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
rewrite <-andb_lazy_alt, andb_true_iff, IHl1 by auto.
rewrite (@subsetr_spec (subset r1) r1 x1 c1) by auto.
clear IHl1 IHr1.
unfold Subset; intuition_in.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
assert (InT a (Node c2 l2 x2 r2)) by auto; intuition_in; order.
Qed.
(** ** Comparison *)
(** Relations [eq] and [lt] over trees *)
Module L := MSetInterface.MakeListOrdering X.
Definition eq := Equal.
Instance eq_equiv : Equivalence eq.
Proof. firstorder. Qed.
Lemma eq_Leq : forall s s', eq s s' <-> L.eq (elements s) (elements s').
Proof.
unfold eq, Equal, L.eq; intros.
setoid_rewrite elements_spec1.
firstorder.
Qed.
Definition lt (s1 s2 : tree) : Prop :=
exists s1' s2', Ok s1' /\ Ok s2' /\ eq s1 s1' /\ eq s2 s2'
/\ L.lt (elements s1') (elements s2').
Declare Equivalent Keys L.eq equivlistA.
Instance lt_strorder : StrictOrder lt.
Proof.
split.
intros s (s1 & s2 & B1 & B2 & E1 & E2 & L).
assert (eqlistA X.eq (elements s1) (elements s2)).
apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto with *.
rewrite <- eq_Leq. transitivity s; auto. symmetry; auto.
rewrite H in L.
apply (StrictOrder_Irreflexive (elements s2)); auto.
intros s1 s2 s3 (s1' & s2' & B1 & B2 & E1 & E2 & L12)
(s2'' & s3' & B2' & B3 & E2' & E3 & L23).
exists s1', s3'; do 4 (split; trivial).
assert (eqlistA X.eq (elements s2') (elements s2'')).
apply SortA_equivlistA_eqlistA with (ltA:=X.lt); auto with *.
rewrite <- eq_Leq. transitivity s2; auto. symmetry; auto.
transitivity (elements s2'); auto.
rewrite H; auto.
Qed.
Instance lt_compat : Proper (eq==>eq==>iff) lt.
Proof.
intros s1 s2 E12 s3 s4 E34. split.
intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
exists s1', s3'; do 2 (split; trivial).
split. transitivity s1; auto. symmetry; auto.
split; auto. transitivity s3; auto. symmetry; auto.
intros (s1' & s3' & B1 & B3 & E1 & E3 & LT).
exists s1', s3'; do 2 (split; trivial).
split. transitivity s2; auto.
split; auto. transitivity s4; auto.
Qed.
(** Proof of the comparison algorithm *)
(** [flatten_e e] returns the list of elements of [e] i.e. the list
of elements actually compared *)
Fixpoint flatten_e (e : enumeration) : list elt := match e with
| End => nil
| More x t r => x :: elements t ++ flatten_e r
end.
Lemma flatten_e_elements :
forall l x r c e,
elements l ++ flatten_e (More x r e) = elements (Node c l x r) ++ flatten_e e.
Proof.
intros. now rewrite elements_node, app_ass.
Qed.
Lemma cons_1 : forall s e,
flatten_e (cons s e) = elements s ++ flatten_e e.
Proof.
induction s; simpl; auto; intros.
rewrite IHs1; apply flatten_e_elements.
Qed.
(** Correctness of this comparison *)
Definition Cmp c x y := CompSpec L.eq L.lt x y c.
Local Hint Unfold Cmp flip : core.
Lemma compare_end_Cmp :
forall e2, Cmp (compare_end e2) nil (flatten_e e2).
Proof.
destruct e2; simpl; constructor; auto. reflexivity.
Qed.
Lemma compare_more_Cmp : forall x1 cont x2 r2 e2 l,
Cmp (cont (cons r2 e2)) l (elements r2 ++ flatten_e e2) ->
Cmp (compare_more x1 cont (More x2 r2 e2)) (x1::l)
(flatten_e (More x2 r2 e2)).
Proof.
simpl; intros; elim_compare x1 x2; simpl; red; auto.
Qed.
Lemma compare_cont_Cmp : forall s1 cont e2 l,
(forall e, Cmp (cont e) l (flatten_e e)) ->
Cmp (compare_cont s1 cont e2) (elements s1 ++ l) (flatten_e e2).
Proof.
induction s1 as [|c1 l1 Hl1 x1 r1 Hr1]; intros; auto.
rewrite elements_node, app_ass; simpl.
apply Hl1; auto. clear e2. intros [|x2 r2 e2].
simpl; auto.
apply compare_more_Cmp.
rewrite <- cons_1; auto.
Qed.
Lemma compare_Cmp : forall s1 s2,
Cmp (compare s1 s2) (elements s1) (elements s2).
Proof.
intros; unfold compare.
rewrite <- (app_nil_r (elements s1)).
replace (elements s2) with (flatten_e (cons s2 End)) by
(rewrite cons_1; simpl; rewrite app_nil_r; auto).
apply compare_cont_Cmp; auto.
intros.
apply compare_end_Cmp; auto.
Qed.
Lemma compare_spec : forall s1 s2 `{Ok s1, Ok s2},
CompSpec eq lt s1 s2 (compare s1 s2).
Proof.
intros.
destruct (compare_Cmp s1 s2); constructor.
rewrite eq_Leq; auto.
intros; exists s1, s2; repeat split; auto.
intros; exists s2, s1; repeat split; auto.
Qed.
(** ** Equality test *)
Lemma equal_spec : forall s1 s2 `{Ok s1, Ok s2},
equal s1 s2 = true <-> eq s1 s2.
Proof.
unfold equal; intros s1 s2 B1 B2.
destruct (@compare_spec s1 s2 B1 B2) as [H|H|H];
split; intros H'; auto; try discriminate.
rewrite H' in H. elim (StrictOrder_Irreflexive s2); auto.
rewrite H' in H. elim (StrictOrder_Irreflexive s2); auto.
Qed.
(** ** A few results about [mindepth] and [maxdepth] *)
Lemma mindepth_maxdepth s : mindepth s <= maxdepth s.
Proof.
induction s; simpl; auto.
rewrite <- Nat.succ_le_mono.
transitivity (mindepth s1). apply Nat.le_min_l.
transitivity (maxdepth s1). trivial. apply Nat.le_max_l.
Qed.
Lemma maxdepth_cardinal s : cardinal s < 2^(maxdepth s).
Proof.
unfold Peano.lt.
induction s as [|c l IHl x r IHr].
- auto.
- simpl. rewrite <- Nat.add_succ_r, <- Nat.add_succ_l, Nat.add_0_r.
apply Nat.add_le_mono; etransitivity;
try apply IHl; try apply IHr; apply Nat.pow_le_mono; auto.
* apply Nat.le_max_l.
* apply Nat.le_max_r.
Qed.
Lemma mindepth_cardinal s : 2^(mindepth s) <= S (cardinal s).
Proof.
unfold Peano.lt.
induction s as [|c l IHl x r IHr].
- auto.
- simpl. rewrite <- Nat.add_succ_r, <- Nat.add_succ_l, Nat.add_0_r.
apply Nat.add_le_mono; etransitivity;
try apply IHl; try apply IHr; apply Nat.pow_le_mono; auto.
* apply Nat.le_min_l.
* apply Nat.le_min_r.
Qed.
Lemma maxdepth_log_cardinal s : s <> Leaf ->
Nat.log2 (cardinal s) < maxdepth s.
Proof.
intros H.
apply Nat.log2_lt_pow2. destruct s; simpl; intuition.
apply maxdepth_cardinal.
Qed.
Lemma mindepth_log_cardinal s : mindepth s <= Nat.log2 (S (cardinal s)).
Proof.
apply Nat.log2_le_pow2. auto with arith.
apply mindepth_cardinal.
Qed.
End Props.
¤ Dauer der Verarbeitung: 0.47 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|