(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** This library has been deprecated since Coq version 8.10. *)
(** * Int31 numbers defines indeed a cyclic structure : Z/(2^31)Z *)
(**
Author: Arnaud Spiwack (+ Pierre Letouzey)
*)
Require Import List.
Require Import Min.
Require Export Int31.
Require Import Znumtheory.
Require Import Zgcd_alt.
Require Import Zpow_facts.
Require Import CyclicAxioms.
Require Import Lia.
Local Open Scope nat_scope.
Local Open Scope int31_scope.
Local Hint Resolve Z.lt_gt Z.div_pos : zarith.
Section Basics.
(** * Basic results about [iszero], [shiftl], [shiftr] *)
Lemma iszero_eq0 : forall x, iszero x = true -> x=0.
Proof.
destruct x; simpl; intros.
repeat
match goal with H:(if ?d then _ else _) = true |- _ =>
destruct d; try discriminate
end.
reflexivity.
Qed.
Lemma iszero_not_eq0 : forall x, iszero x = false -> x<>0.
Proof.
intros x H Eq; rewrite Eq in H; simpl in *; discriminate.
Qed.
Lemma sneakl_shiftr : forall x,
x = sneakl (firstr x) (shiftr x).
Proof.
destruct x; simpl; auto.
Qed.
Lemma sneakr_shiftl : forall x,
x = sneakr (firstl x) (shiftl x).
Proof.
destruct x; simpl; auto.
Qed.
Lemma twice_zero : forall x,
twice x = 0 <-> twice_plus_one x = 1.
Proof.
destruct x; simpl in *; split;
intro H; injection H; intros; subst; auto.
Qed.
Lemma twice_or_twice_plus_one : forall x,
x = twice (shiftr x) \/ x = twice_plus_one (shiftr x).
Proof.
intros; case_eq (firstr x); intros.
destruct x; simpl in *; rewrite H; auto.
destruct x; simpl in *; rewrite H; auto.
Qed.
(** * Iterated shift to the right *)
Definition nshiftr x := nat_rect _ x (fun _ => shiftr).
Lemma nshiftr_S :
forall n x, nshiftr x (S n) = shiftr (nshiftr x n).
Proof.
reflexivity.
Qed.
Lemma nshiftr_S_tail :
forall n x, nshiftr x (S n) = nshiftr (shiftr x) n.
Proof.
intros n; elim n; simpl; auto.
intros; now f_equal.
Qed.
Lemma nshiftr_n_0 : forall n, nshiftr 0 n = 0.
Proof.
induction n; simpl; auto.
rewrite IHn; auto.
Qed.
Lemma nshiftr_size : forall x, nshiftr x size = 0.
Proof.
destruct x; simpl; auto.
Qed.
Lemma nshiftr_above_size : forall k x, size<=k ->
nshiftr x k = 0.
Proof.
intros.
replace k with ((k-size)+size)%nat by omega.
induction (k-size)%nat; auto.
rewrite nshiftr_size; auto.
simpl; rewrite IHn; auto.
Qed.
(** * Iterated shift to the left *)
Definition nshiftl x := nat_rect _ x (fun _ => shiftl).
Lemma nshiftl_S :
forall n x, nshiftl x (S n) = shiftl (nshiftl x n).
Proof.
reflexivity.
Qed.
Lemma nshiftl_S_tail :
forall n x, nshiftl x (S n) = nshiftl (shiftl x) n.
Proof.
intros n; elim n; simpl; intros; now f_equal.
Qed.
Lemma nshiftl_n_0 : forall n, nshiftl 0 n = 0.
Proof.
induction n; simpl; auto.
rewrite IHn; auto.
Qed.
Lemma nshiftl_size : forall x, nshiftl x size = 0.
Proof.
destruct x; simpl; auto.
Qed.
Lemma nshiftl_above_size : forall k x, size<=k ->
nshiftl x k = 0.
Proof.
intros.
replace k with ((k-size)+size)%nat by omega.
induction (k-size)%nat; auto.
rewrite nshiftl_size; auto.
simpl; rewrite IHn; auto.
Qed.
Lemma firstr_firstl :
forall x, firstr x = firstl (nshiftl x (pred size)).
Proof.
destruct x; simpl; auto.
Qed.
Lemma firstl_firstr :
forall x, firstl x = firstr (nshiftr x (pred size)).
Proof.
destruct x; simpl; auto.
Qed.
(** More advanced results about [nshiftr] *)
Lemma nshiftr_predsize_0_firstl : forall x,
nshiftr x (pred size) = 0 -> firstl x = D0.
Proof.
destruct x; compute; intros H; injection H; intros; subst; auto.
Qed.
Lemma nshiftr_0_propagates : forall n p x, n <= p ->
nshiftr x n = 0 -> nshiftr x p = 0.
Proof.
intros.
replace p with ((p-n)+n)%nat by omega.
induction (p-n)%nat.
simpl; auto.
simpl; rewrite IHn0; auto.
Qed.
Lemma nshiftr_0_firstl : forall n x, n < size ->
nshiftr x n = 0 -> firstl x = D0.
Proof.
intros.
apply nshiftr_predsize_0_firstl.
apply nshiftr_0_propagates with n; auto; omega.
Qed.
(** * Some induction principles over [int31] *)
(** Not used for the moment. Are they really useful ? *)
Lemma int31_ind_sneakl : forall P : int31->Prop,
P 0 ->
(forall x d, P x -> P (sneakl d x)) ->
forall x, P x.
Proof.
intros.
assert (forall n, n<=size -> P (nshiftr x (size - n))).
induction n; intros.
rewrite nshiftr_size; auto.
rewrite sneakl_shiftr.
apply H0.
change (P (nshiftr x (S (size - S n)))).
replace (S (size - S n))%nat with (size - n)%nat by omega.
apply IHn; omega.
change x with (nshiftr x (size-size)); auto.
Qed.
Lemma int31_ind_twice : forall P : int31->Prop,
P 0 ->
(forall x, P x -> P (twice x)) ->
(forall x, P x -> P (twice_plus_one x)) ->
forall x, P x.
Proof.
induction x using int31_ind_sneakl; auto.
destruct d; auto.
Qed.
(** * Some generic results about [recr] *)
Section Recr.
(** [recr] satisfies the fixpoint equation used for its definition. *)
Variable (A:Type)(case0:A)(caserec:digits->int31->A->A).
Lemma recr_aux_eqn : forall n x, iszero x = false ->
recr_aux (S n) A case0 caserec x =
caserec (firstr x) (shiftr x) (recr_aux n A case0 caserec (shiftr x)).
Proof.
intros; simpl; rewrite H; auto.
Qed.
Lemma recr_aux_converges :
forall n p x, n <= size -> n <= p ->
recr_aux n A case0 caserec (nshiftr x (size - n)) =
recr_aux p A case0 caserec (nshiftr x (size - n)).
Proof.
induction n.
simpl minus; intros.
rewrite nshiftr_size; destruct p; simpl; auto.
intros.
destruct p.
inversion H0.
unfold recr_aux; fold recr_aux.
destruct (iszero (nshiftr x (size - S n))); auto.
f_equal.
change (shiftr (nshiftr x (size - S n))) with (nshiftr x (S (size - S n))).
replace (S (size - S n))%nat with (size - n)%nat by omega.
apply IHn; auto with arith.
Qed.
Lemma recr_eqn : forall x, iszero x = false ->
recr A case0 caserec x =
caserec (firstr x) (shiftr x) (recr A case0 caserec (shiftr x)).
Proof.
intros.
unfold recr.
change x with (nshiftr x (size - size)).
rewrite (recr_aux_converges size (S size)); auto with arith.
rewrite recr_aux_eqn; auto.
Qed.
(** [recr] is usually equivalent to a variant [recrbis]
written without [iszero] check. *)
Fixpoint recrbis_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
(i:int31) : A :=
match n with
| O => case0
| S next =>
let si := shiftr i in
caserec (firstr i) si (recrbis_aux next A case0 caserec si)
end.
Definition recrbis := recrbis_aux size.
Hypothesis case0_caserec : caserec D0 0 case0 = case0.
Lemma recrbis_aux_equiv : forall n x,
recrbis_aux n A case0 caserec x = recr_aux n A case0 caserec x.
Proof.
induction n; simpl; auto; intros.
case_eq (iszero x); intros; [ | f_equal; auto ].
rewrite (iszero_eq0 _ H); simpl; auto.
replace (recrbis_aux n A case0 caserec 0) with case0; auto.
clear H IHn; induction n; simpl; congruence.
Qed.
Lemma recrbis_equiv : forall x,
recrbis A case0 caserec x = recr A case0 caserec x.
Proof.
intros; apply recrbis_aux_equiv; auto.
Qed.
End Recr.
(** * Incrementation *)
Section Incr.
(** Variant of [incr] via [recrbis] *)
Let Incr (b : digits) (si rec : int31) :=
match b with
| D0 => sneakl D1 si
| D1 => sneakl D0 rec
end.
Definition incrbis_aux n x := recrbis_aux n _ In Incr x.
Lemma incrbis_aux_equiv : forall x, incrbis_aux size x = incr x.
Proof.
unfold incr, recr, incrbis_aux; fold Incr; intros.
apply recrbis_aux_equiv; auto.
Qed.
(** Recursive equations satisfied by [incr] *)
Lemma incr_eqn1 :
forall x, firstr x = D0 -> incr x = twice_plus_one (shiftr x).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H0); simpl; auto.
unfold incr; rewrite recr_eqn; fold incr; auto.
rewrite H; auto.
Qed.
Lemma incr_eqn2 :
forall x, firstr x = D1 -> incr x = twice (incr (shiftr x)).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H0) in H; simpl in H; discriminate.
unfold incr; rewrite recr_eqn; fold incr; auto.
rewrite H; auto.
Qed.
Lemma incr_twice : forall x, incr (twice x) = twice_plus_one x.
Proof.
intros.
rewrite incr_eqn1; destruct x; simpl; auto.
Qed.
Lemma incr_twice_plus_one_firstl :
forall x, firstl x = D0 -> incr (twice_plus_one x) = twice (incr x).
Proof.
intros.
rewrite incr_eqn2; [ | destruct x; simpl; auto ].
f_equal; f_equal.
destruct x; simpl in *; rewrite H; auto.
Qed.
(** The previous result is actually true even without the
constraint on [firstl], but this is harder to prove
(see later). *)
End Incr.
(** * Conversion to [Z] : the [phi] function *)
Section Phi.
(** Variant of [phi] via [recrbis] *)
Let Phi := fun b (_:int31) =>
match b with D0 => Z.double | D1 => Z.succ_double end.
Definition phibis_aux n x := recrbis_aux n _ Z0 Phi x.
Lemma phibis_aux_equiv : forall x, phibis_aux size x = phi x.
Proof.
unfold phi, recr, phibis_aux; fold Phi; intros.
apply recrbis_aux_equiv; auto.
Qed.
(** Recursive equations satisfied by [phi] *)
Lemma phi_eqn1 : forall x, firstr x = D0 ->
phi x = Z.double (phi (shiftr x)).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H0); simpl; auto.
intros; unfold phi; rewrite recr_eqn; fold phi; auto.
rewrite H; auto.
Qed.
Lemma phi_eqn2 : forall x, firstr x = D1 ->
phi x = Z.succ_double (phi (shiftr x)).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H0) in H; simpl in H; discriminate.
intros; unfold phi; rewrite recr_eqn; fold phi; auto.
rewrite H; auto.
Qed.
Lemma phi_twice_firstl : forall x, firstl x = D0 ->
phi (twice x) = Z.double (phi x).
Proof.
intros.
rewrite phi_eqn1; auto; [ | destruct x; auto ].
f_equal; f_equal.
destruct x; simpl in *; rewrite H; auto.
Qed.
Lemma phi_twice_plus_one_firstl : forall x, firstl x = D0 ->
phi (twice_plus_one x) = Z.succ_double (phi x).
Proof.
intros.
rewrite phi_eqn2; auto; [ | destruct x; auto ].
f_equal; f_equal.
destruct x; simpl in *; rewrite H; auto.
Qed.
End Phi.
(** [phi x] is positive and lower than [2^31] *)
Lemma phibis_aux_pos : forall n x, (0 <= phibis_aux n x)%Z.
Proof.
induction n.
simpl; unfold phibis_aux; simpl; auto with zarith.
intros.
unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux n (shiftr x)).
destruct (firstr x).
specialize IHn with (shiftr x); rewrite Z.double_spec; omega.
specialize IHn with (shiftr x); rewrite Z.succ_double_spec; omega.
Qed.
Lemma phibis_aux_bounded :
forall n x, n <= size ->
(phibis_aux n (nshiftr x (size-n)) < 2 ^ (Z.of_nat n))%Z.
Proof.
induction n.
simpl minus; unfold phibis_aux; simpl; auto with zarith.
intros.
unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux n (shiftr (nshiftr x (size - S n)))).
assert (shiftr (nshiftr x (size - S n)) = nshiftr x (size-n)).
replace (size - n)%nat with (S (size - (S n))) by omega.
simpl; auto.
rewrite H0.
assert (H1 : n <= size) by omega.
specialize (IHn x H1).
set (y:=phibis_aux n (nshiftr x (size - n))) in *.
rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith.
case_eq (firstr (nshiftr x (size - S n))); intros.
rewrite Z.double_spec; auto with zarith.
rewrite Z.succ_double_spec; auto with zarith.
Qed.
Lemma phi_nonneg : forall x, (0 <= phi x)%Z.
Proof.
intros.
rewrite <- phibis_aux_equiv.
apply phibis_aux_pos.
Qed.
Hint Resolve phi_nonneg : zarith.
Lemma phi_bounded : forall x, (0 <= phi x < 2 ^ (Z.of_nat size))%Z.
Proof.
intros. split; [auto with zarith|].
rewrite <- phibis_aux_equiv.
change x with (nshiftr x (size-size)).
apply phibis_aux_bounded; auto.
Qed.
Lemma phibis_aux_lowerbound :
forall n x, firstr (nshiftr x n) = D1 ->
(2 ^ Z.of_nat n <= phibis_aux (S n) x)%Z.
Proof.
induction n.
intros.
unfold nshiftr in H; simpl in *.
unfold phibis_aux, recrbis_aux.
rewrite H, Z.succ_double_spec; omega.
intros.
remember (S n) as m.
unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux m (shiftr x)).
subst m.
rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith.
assert (2^(Z.of_nat n) <= phibis_aux (S n) (shiftr x))%Z.
apply IHn.
rewrite <- nshiftr_S_tail; auto.
destruct (firstr x).
change (Z.double (phibis_aux (S n) (shiftr x))) with
(2*(phibis_aux (S n) (shiftr x)))%Z.
omega.
rewrite Z.succ_double_spec; omega.
Qed.
Lemma phi_lowerbound :
forall x, firstl x = D1 -> (2^(Z.of_nat (pred size)) <= phi x)%Z.
Proof.
intros.
generalize (phibis_aux_lowerbound (pred size) x).
rewrite <- firstl_firstr.
change (S (pred size)) with size; auto.
rewrite phibis_aux_equiv; auto.
Qed.
(** * Equivalence modulo [2^n] *)
Section EqShiftL.
(** After killing [n] bits at the left, are the numbers equal ?*)
Definition EqShiftL n x y :=
nshiftl x n = nshiftl y n.
Lemma EqShiftL_zero : forall x y, EqShiftL O x y <-> x = y.
Proof.
unfold EqShiftL; intros; unfold nshiftl; simpl; split; auto.
Qed.
Lemma EqShiftL_size : forall k x y, size<=k -> EqShiftL k x y.
Proof.
red; intros; rewrite 2 nshiftl_above_size; auto.
Qed.
Lemma EqShiftL_le : forall k k' x y, k <= k' ->
EqShiftL k x y -> EqShiftL k' x y.
Proof.
unfold EqShiftL; intros.
replace k' with ((k'-k)+k)%nat by omega.
remember (k'-k)%nat as n.
clear Heqn H k'.
induction n; simpl; auto.
f_equal; auto.
Qed.
Lemma EqShiftL_firstr : forall k x y, k < size ->
EqShiftL k x y -> firstr x = firstr y.
Proof.
intros.
rewrite 2 firstr_firstl.
f_equal.
apply EqShiftL_le with k; auto.
unfold size.
auto with arith.
Qed.
Lemma EqShiftL_twice : forall k x y,
EqShiftL k (twice x) (twice y) <-> EqShiftL (S k) x y.
Proof.
intros; unfold EqShiftL.
rewrite 2 nshiftl_S_tail; split; auto.
Qed.
(** * From int31 to list of digits. *)
(** Lower (=rightmost) bits comes first. *)
Definition i2l := recrbis _ nil (fun d _ rec => d::rec).
Lemma i2l_length : forall x, length (i2l x) = size.
Proof.
intros; reflexivity.
Qed.
Fixpoint lshiftl l x :=
match l with
| nil => x
| d::l => sneakl d (lshiftl l x)
end.
Definition l2i l := lshiftl l On.
Lemma l2i_i2l : forall x, l2i (i2l x) = x.
Proof.
destruct x; compute; auto.
Qed.
Lemma i2l_sneakr : forall x d,
i2l (sneakr d x) = tail (i2l x) ++ d::nil.
Proof.
destruct x; compute; auto.
Qed.
Lemma i2l_sneakl : forall x d,
i2l (sneakl d x) = d :: removelast (i2l x).
Proof.
destruct x; compute; auto.
Qed.
Lemma i2l_l2i : forall l, length l = size ->
i2l (l2i l) = l.
Proof.
repeat (destruct l as [ |? l]; [intros; discriminate | ]).
destruct l; [ | intros; discriminate].
intros _; compute; auto.
Qed.
Fixpoint cstlist (A:Type)(a:A) n :=
match n with
| O => nil
| S n => a::cstlist _ a n
end.
Lemma i2l_nshiftl : forall n x, n<=size ->
i2l (nshiftl x n) = cstlist _ D0 n ++ firstn (size-n) (i2l x).
Proof.
induction n.
intros.
assert (firstn (size-0) (i2l x) = i2l x).
rewrite <- minus_n_O, <- (i2l_length x).
induction (i2l x); simpl; f_equal; auto.
rewrite H0; clear H0.
reflexivity.
intros.
rewrite nshiftl_S.
unfold shiftl; rewrite i2l_sneakl.
simpl cstlist.
rewrite <- app_comm_cons; f_equal.
rewrite IHn; [ | omega].
rewrite removelast_app.
apply f_equal.
replace (size-n)%nat with (S (size - S n))%nat by omega.
rewrite removelast_firstn; auto.
rewrite i2l_length; omega.
generalize (firstn_length (size-n) (i2l x)).
rewrite i2l_length.
intros H0 H1. rewrite H1 in H0.
rewrite min_l in H0 by omega.
simpl length in H0.
omega.
Qed.
(** [i2l] can be used to define a relation equivalent to [EqShiftL] *)
Lemma EqShiftL_i2l : forall k x y,
EqShiftL k x y <-> firstn (size-k) (i2l x) = firstn (size-k) (i2l y).
Proof.
intros.
destruct (le_lt_dec size k) as [Hle|Hlt].
split; intros.
replace (size-k)%nat with O by omega.
unfold firstn; auto.
apply EqShiftL_size; auto.
unfold EqShiftL.
assert (k <= size) by omega.
split; intros.
assert (i2l (nshiftl x k) = i2l (nshiftl y k)) by (f_equal; auto).
rewrite 2 i2l_nshiftl in H1; auto.
eapply app_inv_head; eauto.
assert (i2l (nshiftl x k) = i2l (nshiftl y k)).
rewrite 2 i2l_nshiftl; auto.
f_equal; auto.
rewrite <- (l2i_i2l (nshiftl x k)), <- (l2i_i2l (nshiftl y k)).
f_equal; auto.
Qed.
(** This equivalence allows proving easily the following delicate
result *)
Lemma EqShiftL_twice_plus_one : forall k x y,
EqShiftL k (twice_plus_one x) (twice_plus_one y) <-> EqShiftL (S k) x y.
Proof.
intros.
destruct (le_lt_dec size k) as [Hle|Hlt].
split; intros; apply EqShiftL_size; auto.
rewrite 2 EqShiftL_i2l.
unfold twice_plus_one.
rewrite 2 i2l_sneakl.
replace (size-k)%nat with (S (size - S k))%nat by omega.
remember (size - S k)%nat as n.
remember (i2l x) as lx.
remember (i2l y) as ly.
simpl.
rewrite 2 firstn_removelast.
split; intros.
injection H; auto.
f_equal; auto.
subst ly n; rewrite i2l_length; omega.
subst lx n; rewrite i2l_length; omega.
Qed.
Lemma EqShiftL_shiftr : forall k x y, EqShiftL k x y ->
EqShiftL (S k) (shiftr x) (shiftr y).
Proof.
intros.
destruct (le_lt_dec size (S k)) as [Hle|Hlt].
apply EqShiftL_size; auto.
case_eq (firstr x); intros.
rewrite <- EqShiftL_twice.
unfold twice; rewrite <- H0.
rewrite <- sneakl_shiftr.
rewrite (EqShiftL_firstr k x y); auto.
rewrite <- sneakl_shiftr; auto.
omega.
rewrite <- EqShiftL_twice_plus_one.
unfold twice_plus_one; rewrite <- H0.
rewrite <- sneakl_shiftr.
rewrite (EqShiftL_firstr k x y); auto.
rewrite <- sneakl_shiftr; auto.
omega.
Qed.
Lemma EqShiftL_incrbis : forall n k x y, n<=size ->
(n+k=S size)%nat ->
EqShiftL k x y ->
EqShiftL k (incrbis_aux n x) (incrbis_aux n y).
Proof.
induction n; simpl; intros.
red; auto.
destruct (eq_nat_dec k size).
subst k; apply EqShiftL_size; auto.
unfold incrbis_aux; simpl;
fold (incrbis_aux n (shiftr x)); fold (incrbis_aux n (shiftr y)).
rewrite (EqShiftL_firstr k x y); auto; try omega.
case_eq (firstr y); intros.
rewrite EqShiftL_twice_plus_one.
apply EqShiftL_shiftr; auto.
rewrite EqShiftL_twice.
apply IHn; try omega.
apply EqShiftL_shiftr; auto.
Qed.
Lemma EqShiftL_incr : forall x y,
EqShiftL 1 x y -> EqShiftL 1 (incr x) (incr y).
Proof.
intros.
rewrite <- 2 incrbis_aux_equiv.
apply EqShiftL_incrbis; auto.
Qed.
End EqShiftL.
(** * More equations about [incr] *)
Lemma incr_twice_plus_one :
forall x, incr (twice_plus_one x) = twice (incr x).
Proof.
intros.
rewrite incr_eqn2; [ | destruct x; simpl; auto].
apply EqShiftL_incr.
red; destruct x; simpl; auto.
Qed.
Lemma incr_firstr : forall x, firstr (incr x) <> firstr x.
Proof.
intros.
case_eq (firstr x); intros.
rewrite incr_eqn1; auto.
destruct (shiftr x); simpl; discriminate.
rewrite incr_eqn2; auto.
destruct (incr (shiftr x)); simpl; discriminate.
Qed.
Lemma incr_inv : forall x y,
incr x = twice_plus_one y -> x = twice y.
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H0) in *; simpl in *.
change (incr 0) with 1 in H.
symmetry; rewrite twice_zero; auto.
case_eq (firstr x); intros.
rewrite incr_eqn1 in H; auto.
clear H0; destruct x; destruct y; simpl in *.
injection H; intros; subst; auto.
elim (incr_firstr x).
rewrite H1, H; destruct y; simpl; auto.
Qed.
(** * Conversion from [Z] : the [phi_inv] function *)
(** First, recursive equations *)
Lemma phi_inv_double_plus_one : forall z,
phi_inv (Z.succ_double z) = twice_plus_one (phi_inv z).
Proof.
destruct z; simpl; auto.
induction p; simpl.
rewrite 2 incr_twice; auto.
rewrite incr_twice, incr_twice_plus_one.
f_equal.
apply incr_inv; auto.
auto.
Qed.
Lemma phi_inv_double : forall z,
phi_inv (Z.double z) = twice (phi_inv z).
Proof.
destruct z; simpl; auto.
rewrite incr_twice_plus_one; auto.
Qed.
Lemma phi_inv_incr : forall z,
phi_inv (Z.succ z) = incr (phi_inv z).
Proof.
destruct z.
simpl; auto.
simpl; auto.
induction p; simpl; auto.
rewrite <- Pos.add_1_r, IHp, incr_twice_plus_one; auto.
rewrite incr_twice; auto.
simpl; auto.
destruct p; simpl; auto.
rewrite incr_twice; auto.
f_equal.
rewrite incr_twice_plus_one; auto.
induction p; simpl; auto.
rewrite incr_twice; auto.
f_equal.
rewrite incr_twice_plus_one; auto.
Qed.
(** [phi_inv o inv], the always-exact and easy-to-prove trip :
from int31 to Z and then back to int31. *)
Lemma phi_inv_phi_aux :
forall n x, n <= size ->
phi_inv (phibis_aux n (nshiftr x (size-n))) =
nshiftr x (size-n).
Proof.
induction n.
intros; simpl minus.
rewrite nshiftr_size; auto.
intros.
unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux n (shiftr (nshiftr x (size-S n)))).
assert (shiftr (nshiftr x (size - S n)) = nshiftr x (size-n)).
replace (size - n)%nat with (S (size - (S n))); auto; omega.
rewrite H0.
case_eq (firstr (nshiftr x (size - S n))); intros.
rewrite phi_inv_double.
rewrite IHn by omega.
rewrite <- H0.
remember (nshiftr x (size - S n)) as y.
destruct y; simpl in H1; rewrite H1; auto.
rewrite phi_inv_double_plus_one.
rewrite IHn by omega.
rewrite <- H0.
remember (nshiftr x (size - S n)) as y.
destruct y; simpl in H1; rewrite H1; auto.
Qed.
Lemma phi_inv_phi : forall x, phi_inv (phi x) = x.
Proof.
intros.
rewrite <- phibis_aux_equiv.
replace x with (nshiftr x (size - size)) by auto.
apply phi_inv_phi_aux; auto.
Qed.
(** The other composition [phi o phi_inv] is harder to prove correct.
In particular, an overflow can happen, so a modulo is needed.
For the moment, we proceed via several steps, the first one
being a detour to [positive_to_in31]. *)
(** * [positive_to_int31] *)
(** A variant of [p2i] with [twice] and [twice_plus_one] instead of
[2*i] and [2*i+1] *)
Fixpoint p2ibis n p : (N*int31)%type :=
match n with
| O => (Npos p, On)
| S n => match p with
| xO p => let (r,i) := p2ibis n p in (r, twice i)
| xI p => let (r,i) := p2ibis n p in (r, twice_plus_one i)
| xH => (N0, In)
end
end.
Lemma p2ibis_bounded : forall n p,
nshiftr (snd (p2ibis n p)) n = 0.
Proof.
induction n.
simpl; intros; auto.
simpl p2ibis; intros.
destruct p; simpl snd.
specialize IHn with p.
destruct (p2ibis n p). simpl @snd in *.
rewrite nshiftr_S_tail.
destruct (le_lt_dec size n) as [Hle|Hlt].
rewrite nshiftr_above_size; auto.
assert (H:=nshiftr_0_firstl _ _ Hlt IHn).
replace (shiftr (twice_plus_one i)) with i; auto.
destruct i; simpl in *. rewrite H; auto.
specialize IHn with p.
destruct (p2ibis n p); simpl @snd in *.
rewrite nshiftr_S_tail.
destruct (le_lt_dec size n) as [Hle|Hlt].
rewrite nshiftr_above_size; auto.
assert (H:=nshiftr_0_firstl _ _ Hlt IHn).
replace (shiftr (twice i)) with i; auto.
destruct i; simpl in *; rewrite H; auto.
rewrite nshiftr_S_tail; auto.
replace (shiftr In) with 0; auto.
apply nshiftr_n_0.
Qed.
Local Open Scope Z_scope.
Lemma p2ibis_spec : forall n p, (n<=size)%nat ->
Zpos p = (Z.of_N (fst (p2ibis n p)))*2^(Z.of_nat n) +
phi (snd (p2ibis n p)).
Proof.
induction n; intros.
simpl; rewrite Pos.mul_1_r; auto.
replace (2^(Z.of_nat (S n)))%Z with (2*2^(Z.of_nat n))%Z by
(rewrite <- Z.pow_succ_r, <- Zpos_P_of_succ_nat;
auto with zarith).
rewrite (Z.mul_comm 2).
assert (n<=size)%nat by omega.
destruct p; simpl; [ | | auto];
specialize (IHn p H0);
generalize (p2ibis_bounded n p);
destruct (p2ibis n p) as (r,i); simpl in *; intros.
change (Zpos p~1) with (2*Zpos p + 1)%Z.
rewrite phi_twice_plus_one_firstl, Z.succ_double_spec.
rewrite IHn; ring.
apply (nshiftr_0_firstl n); auto; try omega.
change (Zpos p~0) with (2*Zpos p)%Z.
rewrite phi_twice_firstl.
change (Z.double (phi i)) with (2*(phi i))%Z.
rewrite IHn; ring.
apply (nshiftr_0_firstl n); auto; try omega.
Qed.
(** We now prove that this [p2ibis] is related to [phi_inv_positive] *)
Lemma phi_inv_positive_p2ibis : forall n p, (n<=size)%nat ->
EqShiftL (size-n) (phi_inv_positive p) (snd (p2ibis n p)).
Proof.
induction n.
intros.
apply EqShiftL_size; auto.
intros.
simpl p2ibis; destruct p; [ | | red; auto];
specialize IHn with p;
destruct (p2ibis n p); simpl @snd in *; simpl phi_inv_positive;
rewrite ?EqShiftL_twice_plus_one, ?EqShiftL_twice;
replace (S (size - S n))%nat with (size - n)%nat by omega;
apply IHn; omega.
Qed.
(** This gives the expected result about [phi o phi_inv], at least
for the positive case. *)
Lemma phi_phi_inv_positive : forall p,
phi (phi_inv_positive p) = (Zpos p) mod (2^(Z.of_nat size)).
Proof.
intros.
replace (phi_inv_positive p) with (snd (p2ibis size p)).
rewrite (p2ibis_spec size p) by auto.
rewrite Z.add_comm, Z_mod_plus.
symmetry; apply Zmod_small.
apply phi_bounded.
auto with zarith.
symmetry.
rewrite <- EqShiftL_zero.
apply (phi_inv_positive_p2ibis size p); auto.
Qed.
(** Moreover, [p2ibis] is also related with [p2i] and hence with
[positive_to_int31]. *)
Lemma double_twice_firstl : forall x, firstl x = D0 ->
(Twon*x = twice x)%int31.
Proof.
intros.
unfold mul31.
rewrite <- Z.double_spec, <- phi_twice_firstl, phi_inv_phi; auto.
Qed.
Lemma double_twice_plus_one_firstl : forall x, firstl x = D0 ->
(Twon*x+In = twice_plus_one x)%int31.
Proof.
intros.
rewrite double_twice_firstl; auto.
unfold add31.
rewrite phi_twice_firstl, <- Z.succ_double_spec,
<- phi_twice_plus_one_firstl, phi_inv_phi; auto.
Qed.
Lemma p2i_p2ibis : forall n p, (n<=size)%nat ->
p2i n p = p2ibis n p.
Proof.
induction n; simpl; auto; intros.
destruct p; auto; specialize IHn with p;
generalize (p2ibis_bounded n p);
rewrite IHn; try omega; destruct (p2ibis n p); simpl; intros;
f_equal; auto.
apply double_twice_plus_one_firstl.
apply (nshiftr_0_firstl n); auto; omega.
apply double_twice_firstl.
apply (nshiftr_0_firstl n); auto; omega.
Qed.
Lemma positive_to_int31_phi_inv_positive : forall p,
snd (positive_to_int31 p) = phi_inv_positive p.
Proof.
intros; unfold positive_to_int31.
rewrite p2i_p2ibis; auto.
symmetry.
rewrite <- EqShiftL_zero.
apply (phi_inv_positive_p2ibis size); auto.
Qed.
Lemma positive_to_int31_spec : forall p,
Zpos p = (Z.of_N (fst (positive_to_int31 p)))*2^(Z.of_nat size) +
phi (snd (positive_to_int31 p)).
Proof.
unfold positive_to_int31.
intros; rewrite p2i_p2ibis; auto.
apply p2ibis_spec; auto.
Qed.
(** Thanks to the result about [phi o phi_inv_positive], we can
now establish easily the most general results about
[phi o twice] and so one. *)
Lemma phi_twice : forall x,
phi (twice x) = (Z.double (phi x)) mod 2^(Z.of_nat size).
Proof.
intros.
pattern x at 1; rewrite <- (phi_inv_phi x).
rewrite <- phi_inv_double.
assert (0 <= Z.double (phi x)).
rewrite Z.double_spec; generalize (phi_bounded x); omega.
destruct (Z.double (phi x)).
simpl; auto.
apply phi_phi_inv_positive.
compute in H; elim H; auto.
Qed.
Lemma phi_twice_plus_one : forall x,
phi (twice_plus_one x) = (Z.succ_double (phi x)) mod 2^(Z.of_nat size).
Proof.
intros.
pattern x at 1; rewrite <- (phi_inv_phi x).
rewrite <- phi_inv_double_plus_one.
assert (0 <= Z.succ_double (phi x)).
rewrite Z.succ_double_spec; generalize (phi_bounded x); omega.
destruct (Z.succ_double (phi x)).
simpl; auto.
apply phi_phi_inv_positive.
compute in H; elim H; auto.
Qed.
Lemma phi_incr : forall x,
phi (incr x) = (Z.succ (phi x)) mod 2^(Z.of_nat size).
Proof.
intros.
pattern x at 1; rewrite <- (phi_inv_phi x).
rewrite <- phi_inv_incr.
assert (0 <= Z.succ (phi x)).
change (Z.succ (phi x)) with ((phi x)+1)%Z;
generalize (phi_bounded x); omega.
destruct (Z.succ (phi x)).
simpl; auto.
apply phi_phi_inv_positive.
compute in H; elim H; auto.
Qed.
(** With the previous results, we can deal with [phi o phi_inv] even
in the negative case *)
Lemma phi_phi_inv_negative :
forall p, phi (incr (complement_negative p)) = (Zneg p) mod 2^(Z.of_nat size).
Proof.
induction p.
simpl complement_negative.
rewrite phi_incr in IHp.
rewrite incr_twice, phi_twice_plus_one.
remember (phi (complement_negative p)) as q.
rewrite Z.succ_double_spec.
replace (2*q+1) with (2*(Z.succ q)-1) by omega.
rewrite <- Zminus_mod_idemp_l, <- Zmult_mod_idemp_r, IHp.
rewrite Zmult_mod_idemp_r, Zminus_mod_idemp_l; auto with zarith.
simpl complement_negative.
rewrite incr_twice_plus_one, phi_twice.
remember (phi (incr (complement_negative p))) as q.
rewrite Z.double_spec, IHp, Zmult_mod_idemp_r; auto with zarith.
simpl; auto.
Qed.
Lemma phi_phi_inv :
forall z, phi (phi_inv z) = z mod 2 ^ (Z.of_nat size).
Proof.
destruct z.
simpl; auto.
apply phi_phi_inv_positive.
apply phi_phi_inv_negative.
Qed.
End Basics.
Instance int31_ops : ZnZ.Ops int31 :=
{
digits := 31%positive; (* number of digits *)
zdigits := 31; (* number of digits *)
to_Z := phi; (* conversion to Z *)
of_pos := positive_to_int31; (* positive -> N*int31 : p => N,i
where p = N*2^31+phi i *)
head0 := head031; (* number of head 0 *)
tail0 := tail031; (* number of tail 0 *)
zero := 0;
one := 1;
minus_one := Tn; (* 2^31 - 1 *)
compare := compare31;
eq0 := fun i => match i ?= 0 with Eq => true | _ => false end;
opp_c := fun i => 0 -c i;
opp := opp31;
opp_carry := fun i => 0-i-1;
succ_c := fun i => i +c 1;
add_c := add31c;
add_carry_c := add31carryc;
succ := fun i => i + 1;
add := add31;
add_carry := fun i j => i + j + 1;
pred_c := fun i => i -c 1;
sub_c := sub31c;
sub_carry_c := sub31carryc;
pred := fun i => i - 1;
sub := sub31;
sub_carry := fun i j => i - j - 1;
mul_c := mul31c;
mul := mul31;
square_c := fun x => x *c x;
div21 := div3121;
div_gt := div31; (* this is supposed to be the special case of
division a/b where a > b *)
div := div31;
modulo_gt := fun i j => let (_,r) := i/j in r;
modulo := fun i j => let (_,r) := i/j in r;
gcd_gt := gcd31;
gcd := gcd31;
add_mul_div := addmuldiv31;
pos_mod := (* modulo 2^p *)
fun p i =>
match p ?= 31 with
| Lt => addmuldiv31 p 0 (addmuldiv31 (31-p) i 0)
| _ => i
end;
is_even :=
fun i => let (_,r) := i/2 in
match r ?= 0 with Eq => true | _ => false end;
sqrt2 := sqrt312;
sqrt := sqrt31;
lor := lor31;
land := land31;
lxor := lxor31
}.
Section Int31_Specs.
Local Open Scope Z_scope.
Notation "[| x |]" := (phi x) (at level 0, x at level 99).
Local Notation wB := (2 ^ (Z.of_nat size)).
Lemma wB_pos : wB > 0.
Proof.
auto with zarith.
Qed.
Notation "[+| c |]" :=
(interp_carry 1 wB phi c) (at level 0, c at level 99).
Notation "[-| c |]" :=
(interp_carry (-1) wB phi c) (at level 0, c at level 99).
Notation "[|| x ||]" :=
(zn2z_to_Z wB phi x) (at level 0, x at level 99).
Lemma spec_zdigits : [| 31 |] = 31.
Proof.
reflexivity.
Qed.
Lemma spec_more_than_1_digit: 1 < 31.
Proof.
auto with zarith.
Qed.
Lemma spec_0 : [| 0 |] = 0.
Proof.
reflexivity.
Qed.
Lemma spec_1 : [| 1 |] = 1.
Proof.
reflexivity.
Qed.
Lemma spec_m1 : [| Tn |] = wB - 1.
Proof.
reflexivity.
Qed.
Lemma spec_compare : forall x y,
(x ?= y)%int31 = ([|x|] ?= [|y|]).
Proof. reflexivity. Qed.
(** Addition *)
Lemma spec_add_c : forall x y, [+|add31c x y|] = [|x|] + [|y|].
Proof.
intros; unfold add31c, add31, interp_carry; rewrite phi_phi_inv.
generalize (phi_bounded x)(phi_bounded y); intros.
set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
assert ((X+Y) mod wB ?= X+Y <> Eq -> [+|C1 (phi_inv (X+Y))|] = X+Y).
unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros.
destruct (Z_lt_le_dec (X+Y) wB).
contradict H1; auto using Zmod_small with zarith.
rewrite <- (Z_mod_plus_full (X+Y) (-1) wB).
rewrite Zmod_small; lia.
generalize (Z.compare_eq ((X+Y) mod wB) (X+Y)); intros Heq.
destruct Z.compare; intros;
[ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
Qed.
Lemma spec_succ_c : forall x, [+|add31c x 1|] = [|x|] + 1.
Proof.
intros; apply spec_add_c.
Qed.
Lemma spec_add_carry_c : forall x y, [+|add31carryc x y|] = [|x|] + [|y|] + 1.
Proof.
intros.
unfold add31carryc, interp_carry; rewrite phi_phi_inv.
generalize (phi_bounded x)(phi_bounded y); intros.
set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
assert ((X+Y+1) mod wB ?= X+Y+1 <> Eq -> [+|C1 (phi_inv (X+Y+1))|] = X+Y+1).
unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros.
destruct (Z_lt_le_dec (X+Y+1) wB).
contradict H1; auto using Zmod_small with zarith.
rewrite <- (Z_mod_plus_full (X+Y+1) (-1) wB).
rewrite Zmod_small; lia.
generalize (Z.compare_eq ((X+Y+1) mod wB) (X+Y+1)); intros Heq.
destruct Z.compare; intros;
[ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
Qed.
Lemma spec_add : forall x y, [|x+y|] = ([|x|] + [|y|]) mod wB.
Proof.
intros; apply phi_phi_inv.
Qed.
Lemma spec_add_carry :
forall x y, [|x+y+1|] = ([|x|] + [|y|] + 1) mod wB.
Proof.
unfold add31; intros.
repeat rewrite phi_phi_inv.
apply Zplus_mod_idemp_l.
Qed.
Lemma spec_succ : forall x, [|x+1|] = ([|x|] + 1) mod wB.
Proof.
intros; rewrite <- spec_1; apply spec_add.
Qed.
(** Subtraction *)
Lemma spec_sub_c : forall x y, [-|sub31c x y|] = [|x|] - [|y|].
Proof.
unfold sub31c, sub31, interp_carry; intros.
rewrite phi_phi_inv.
generalize (phi_bounded x)(phi_bounded y); intros.
set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
assert ((X-Y) mod wB ?= X-Y <> Eq -> [-|C1 (phi_inv (X-Y))|] = X-Y).
unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros.
destruct (Z_lt_le_dec (X-Y) 0).
rewrite <- (Z_mod_plus_full (X-Y) 1 wB).
rewrite Zmod_small; lia.
contradict H1; apply Zmod_small; lia.
generalize (Z.compare_eq ((X-Y) mod wB) (X-Y)); intros Heq.
destruct Z.compare; intros;
[ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
Qed.
Lemma spec_sub_carry_c : forall x y, [-|sub31carryc x y|] = [|x|] - [|y|] - 1.
Proof.
unfold sub31carryc, sub31, interp_carry; intros.
rewrite phi_phi_inv.
generalize (phi_bounded x)(phi_bounded y); intros.
set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
assert ((X-Y-1) mod wB ?= X-Y-1 <> Eq -> [-|C1 (phi_inv (X-Y-1))|] = X-Y-1).
unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros.
destruct (Z_lt_le_dec (X-Y-1) 0).
rewrite <- (Z_mod_plus_full (X-Y-1) 1 wB).
rewrite Zmod_small; lia.
contradict H1; apply Zmod_small; lia.
generalize (Z.compare_eq ((X-Y-1) mod wB) (X-Y-1)); intros Heq.
destruct Z.compare; intros;
[ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
Qed.
Lemma spec_sub : forall x y, [|x-y|] = ([|x|] - [|y|]) mod wB.
Proof.
intros; apply phi_phi_inv.
Qed.
Lemma spec_sub_carry :
forall x y, [|x-y-1|] = ([|x|] - [|y|] - 1) mod wB.
Proof.
unfold sub31; intros.
repeat rewrite phi_phi_inv.
apply Zminus_mod_idemp_l.
Qed.
Lemma spec_opp_c : forall x, [-|sub31c 0 x|] = -[|x|].
Proof.
intros; apply spec_sub_c.
Qed.
Lemma spec_opp : forall x, [|0 - x|] = (-[|x|]) mod wB.
Proof.
intros; apply phi_phi_inv.
Qed.
Lemma spec_opp_carry : forall x, [|0 - x - 1|] = wB - [|x|] - 1.
Proof.
unfold sub31; intros.
repeat rewrite phi_phi_inv.
change [|1|] with 1; change [|0|] with 0.
rewrite <- (Z_mod_plus_full (0-[|x|]) 1 wB).
rewrite Zminus_mod_idemp_l.
rewrite Zmod_small; generalize (phi_bounded x); lia.
Qed.
Lemma spec_pred_c : forall x, [-|sub31c x 1|] = [|x|] - 1.
Proof.
intros; apply spec_sub_c.
Qed.
Lemma spec_pred : forall x, [|x-1|] = ([|x|] - 1) mod wB.
Proof.
intros; apply spec_sub.
Qed.
(** Multiplication *)
Lemma phi2_phi_inv2 : forall x, [||phi_inv2 x||] = x mod (wB^2).
Proof.
assert (forall z, (z / wB) mod wB * wB + z mod wB = z mod wB ^ 2).
intros.
assert ((z/wB) mod wB = z/wB - (z/wB/wB)*wB).
rewrite (Z_div_mod_eq (z/wB) wB wB_pos) at 2; ring.
assert (z mod wB = z - (z/wB)*wB).
rewrite (Z_div_mod_eq z wB wB_pos) at 2; ring.
rewrite H.
rewrite H0 at 1.
ring_simplify.
rewrite Zdiv_Zdiv; auto with zarith.
rewrite (Z_div_mod_eq z (wB*wB)) at 2; auto with zarith.
change (wB*wB) with (wB^2); ring.
unfold phi_inv2.
destruct x; unfold zn2z_to_Z; rewrite ?phi_phi_inv;
change base with wB; auto.
Qed.
Lemma spec_mul_c : forall x y, [|| mul31c x y ||] = [|x|] * [|y|].
Proof.
unfold mul31c; intros.
rewrite phi2_phi_inv2.
apply Zmod_small.
generalize (phi_bounded x)(phi_bounded y); intros.
change (wB^2) with (wB * wB).
auto using Z.mul_lt_mono_nonneg with zarith.
Qed.
Lemma spec_mul : forall x y, [|x*y|] = ([|x|] * [|y|]) mod wB.
Proof.
intros; apply phi_phi_inv.
Qed.
Lemma spec_square_c : forall x, [|| mul31c x x ||] = [|x|] * [|x|].
Proof.
intros; apply spec_mul_c.
Qed.
(** Division *)
Lemma spec_div21 : forall a1 a2 b,
wB/2 <= [|b|] ->
[|a1|] < [|b|] ->
let (q,r) := div3121 a1 a2 b in
[|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
unfold div3121; intros.
generalize (phi_bounded a1)(phi_bounded a2)(phi_bounded b); intros.
assert ([|b|]>0) by (auto with zarith).
generalize (Z_div_mod (phi2 a1 a2) [|b|] H4) (Z_div_pos (phi2 a1 a2) [|b|] H4).
unfold Z.div; destruct (Z.div_eucl (phi2 a1 a2) [|b|]).
rewrite ?phi_phi_inv.
destruct 1; intros.
unfold phi2 in *.
change base with wB; change base with wB in H5.
change (Z.pow_pos 2 31) with wB; change (Z.pow_pos 2 31) with wB in H.
rewrite H5, Z.mul_comm.
replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega).
replace (z mod wB) with z; auto with zarith.
symmetry; apply Zmod_small.
split.
apply H7; change base with wB; auto with zarith.
apply Z.mul_lt_mono_pos_r with [|b|]; [omega| ].
rewrite Z.mul_comm.
apply Z.le_lt_trans with ([|b|]*z+z0); [omega| ].
rewrite <- H5.
apply Z.le_lt_trans with ([|a1|]*wB+(wB-1)); [omega | ].
replace ([|a1|]*wB+(wB-1)) with (wB*([|a1|]+1)-1) by ring.
assert (wB*([|a1|]+1) <= wB*[|b|]); try omega.
apply Z.mul_le_mono_nonneg; omega.
Qed.
Lemma spec_div : forall a b, 0 < [|b|] ->
let (q,r) := div31 a b in
[|a|] = [|q|] * [|b|] + [|r|] /\
0 <= [|r|] < [|b|].
Proof.
unfold div31; intros.
assert ([|b|]>0) by (auto with zarith).
generalize (Z_div_mod [|a|] [|b|] H0) (Z_div_pos [|a|] [|b|] H0).
unfold Z.div; destruct (Z.div_eucl [|a|] [|b|]).
rewrite ?phi_phi_inv.
destruct 1; intros.
rewrite H1, Z.mul_comm.
generalize (phi_bounded a)(phi_bounded b); intros.
replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega).
replace (z mod wB) with z; auto with zarith.
symmetry; apply Zmod_small.
split; auto with zarith.
apply Z.le_lt_trans with [|a|]; auto with zarith.
rewrite H1.
apply Z.le_trans with ([|b|]*z); try omega.
rewrite <- (Z.mul_1_l z) at 1.
apply Z.mul_le_mono_nonneg; auto with zarith.
Qed.
Lemma spec_mod : forall a b, 0 < [|b|] ->
[|let (_,r) := (a/b)%int31 in r|] = [|a|] mod [|b|].
Proof.
unfold div31; intros.
assert ([|b|]>0) by (auto with zarith).
unfold Z.modulo.
generalize (Z_div_mod [|a|] [|b|] H0).
destruct (Z.div_eucl [|a|] [|b|]).
rewrite ?phi_phi_inv.
destruct 1; intros.
generalize (phi_bounded b); intros.
apply Zmod_small; omega.
Qed.
Lemma phi_gcd : forall i j,
[|gcd31 i j|] = Zgcdn (2*size) [|j|] [|i|].
Proof.
unfold gcd31.
induction (2*size)%nat; intros.
reflexivity.
simpl euler.
unfold compare31.
change [|On|] with 0.
generalize (phi_bounded j)(phi_bounded i); intros.
case_eq [|j|]; intros.
simpl; intros.
generalize (Zabs_spec [|i|]); omega.
simpl. rewrite IHn, H1; f_equal.
rewrite spec_mod, H1; auto.
rewrite H1; compute; auto.
rewrite H1 in H; destruct H as [H _]; compute in H; elim H; auto.
Qed.
Lemma spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd31 a b|].
Proof.
intros.
rewrite phi_gcd.
apply Zis_gcd_sym.
apply Zgcdn_is_gcd.
unfold Zgcd_bound.
generalize (phi_bounded b).
destruct [|b|].
unfold size; auto with zarith.
intros (_,H).
cut (Pos.size_nat p <= size)%nat; [ omega | rewrite <- Zpower2_Psize; auto].
intros (H,_); compute in H; elim H; auto.
Qed.
Lemma iter_int31_iter_nat : forall A f i a,
iter_int31 i A f a = iter_nat (Z.abs_nat [|i|]) A f a.
Proof.
intros.
unfold iter_int31.
rewrite <- recrbis_equiv; auto; unfold recrbis.
rewrite <- phibis_aux_equiv.
revert i a; induction size.
simpl; auto.
simpl; intros.
case_eq (firstr i); intros H; rewrite 2 IHn;
unfold phibis_aux; simpl; rewrite ?H; fold (phibis_aux n (shiftr i));
generalize (phibis_aux_pos n (shiftr i)); intros;
set (z := phibis_aux n (shiftr i)) in *; clearbody z;
rewrite <- nat_rect_plus.
f_equal.
rewrite Z.double_spec, <- Z.add_diag.
symmetry; apply Zabs2Nat.inj_add; auto with zarith.
change (iter_nat (S (Z.abs_nat z) + (Z.abs_nat z))%nat A f a =
iter_nat (Z.abs_nat (Z.succ_double z)) A f a); f_equal.
rewrite Z.succ_double_spec, <- Z.add_diag.
rewrite Zabs2Nat.inj_add; auto with zarith.
rewrite Zabs2Nat.inj_add; auto with zarith.
change (Z.abs_nat 1) with 1%nat; omega.
Qed.
Fixpoint addmuldiv31_alt n i j :=
match n with
| O => i
| S n => addmuldiv31_alt n (sneakl (firstl j) i) (shiftl j)
end.
Lemma addmuldiv31_equiv : forall p x y,
addmuldiv31 p x y = addmuldiv31_alt (Z.abs_nat [|p|]) x y.
Proof.
intros.
unfold addmuldiv31.
rewrite iter_int31_iter_nat.
set (n:=Z.abs_nat [|p|]); clearbody n; clear p.
revert x y; induction n.
simpl; auto.
intros.
simpl addmuldiv31_alt.
replace (S n) with (n+1)%nat by (rewrite plus_comm; auto).
rewrite nat_rect_plus; simpl; auto.
Qed.
Lemma spec_add_mul_div : forall x y p, [|p|] <= Zpos 31 ->
[| addmuldiv31 p x y |] =
([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos 31) - [|p|]))) mod wB.
Proof.
intros.
rewrite addmuldiv31_equiv.
assert ([|p|] = Z.of_nat (Z.abs_nat [|p|])).
rewrite Zabs2Nat.id_abs; symmetry; apply Z.abs_eq.
destruct (phi_bounded p); auto.
rewrite H0; rewrite H0 in H; clear H0; rewrite Zabs2Nat.id.
set (n := Z.abs_nat [|p|]) in *; clearbody n.
assert (n <= 31)%nat.
rewrite Nat2Z.inj_le; auto with zarith.
clear p H; revert x y.
induction n.
simpl Z.of_nat; intros.
rewrite Z.mul_1_r.
replace ([|y|] / 2^(31-0)) with 0.
rewrite Z.add_0_r.
symmetry; apply Zmod_small; apply phi_bounded.
symmetry; apply Zdiv_small; apply phi_bounded.
simpl addmuldiv31_alt; intros.
rewrite IHn; [ | omega ].
case_eq (firstl y); intros.
rewrite phi_twice, Z.double_spec.
rewrite phi_twice_firstl; auto.
change (Z.double [|y|]) with (2*[|y|]).
rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith.
rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod.
f_equal.
f_equal.
ring.
replace (31-Z.of_nat n) with (Z.succ(31-Z.succ(Z.of_nat n))) by ring.
rewrite Z.pow_succ_r, <- Zdiv_Zdiv; auto with zarith.
rewrite Z.mul_comm, Z_div_mult; auto with zarith.
rewrite phi_twice_plus_one, Z.succ_double_spec.
rewrite phi_twice; auto.
change (Z.double [|y|]) with (2*[|y|]).
rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith.
rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod.
rewrite Z.mul_add_distr_r, Z.mul_1_l, <- Z.add_assoc.
f_equal.
f_equal.
ring.
assert ((2*[|y|]) mod wB = 2*[|y|] - wB).
clear - H. symmetry. apply Zmod_unique with 1; [ | ring ].
generalize (phi_lowerbound _ H) (phi_bounded y).
set (wB' := 2^Z.of_nat (pred size)).
replace wB with (2*wB'); [ omega | ].
unfold wB'. rewrite <- Z.pow_succ_r, <- Nat2Z.inj_succ by (auto with zarith).
f_equal.
rewrite H1.
replace wB with (2^(Z.of_nat n)*2^(31-Z.of_nat n)) by
(rewrite <- Zpower_exp; auto with zarith; f_equal; unfold size; ring).
unfold Z.sub; rewrite <- Z.mul_opp_l.
rewrite Z_div_plus; auto with zarith.
ring_simplify.
replace (31+-Z.of_nat n) with (Z.succ(31-Z.succ(Z.of_nat n))) by ring.
rewrite Z.pow_succ_r, <- Zdiv_Zdiv; auto with zarith.
rewrite Z.mul_comm, Z_div_mult; auto with zarith.
Qed.
Lemma shift_unshift_mod_2 : forall n p a, 0 <= p <= n ->
((a * 2 ^ (n - p)) mod (2^n) / 2 ^ (n - p)) mod (2^n) =
a mod 2 ^ p.
Proof.
intros.
rewrite Zmod_small.
rewrite Zmod_eq by (auto with zarith).
unfold Z.sub at 1.
rewrite Z_div_plus_full_l
by (cut (0 < 2^(n-p)); auto with zarith).
assert (2^n = 2^(n-p)*2^p).
rewrite <- Zpower_exp by (auto with zarith).
replace (n-p+p) with n; auto with zarith.
rewrite H0.
rewrite <- Zdiv_Zdiv, Z_div_mult by (auto with zarith).
rewrite (Z.mul_comm (2^(n-p))), Z.mul_assoc.
rewrite <- Z.mul_opp_l.
rewrite Z_div_mult by (auto with zarith).
symmetry; apply Zmod_eq; auto with zarith.
remember (a * 2 ^ (n - p)) as b.
destruct (Z_mod_lt b (2^n)); auto with zarith.
split.
apply Z_div_pos; auto with zarith.
apply Zdiv_lt_upper_bound; auto with zarith.
apply Z.lt_le_trans with (2^n); auto with zarith.
rewrite <- (Z.mul_1_r (2^n)) at 1.
apply Z.mul_le_mono_nonneg; auto with zarith.
cut (0 < 2 ^ (n-p)); auto with zarith.
Qed.
Lemma spec_pos_mod : forall w p,
[|ZnZ.pos_mod p w|] = [|w|] mod (2 ^ [|p|]).
Proof.
unfold int31_ops, ZnZ.pos_mod, compare31.
change [|31|] with 31%Z.
assert (forall w p, 31<=p -> [|w|] = [|w|] mod 2^p).
intros.
generalize (phi_bounded w).
symmetry; apply Zmod_small.
split; auto with zarith.
apply Z.lt_le_trans with wB; auto with zarith.
apply Zpower_le_monotone; auto with zarith.
intros.
case_eq ([|p|] ?= 31); intros;
[ apply H; rewrite (Z.compare_eq _ _ H0); auto with zarith | |
apply H; change ([|p|]>31)%Z in H0; auto with zarith ].
change ([|p|]<31) in H0.
rewrite spec_add_mul_div by auto with zarith.
change [|0|] with 0%Z; rewrite Z.mul_0_l, Z.add_0_l.
generalize (phi_bounded p)(phi_bounded w); intros.
assert (31-[|p|]<wB).
apply Z.le_lt_trans with 31%Z; auto with zarith.
compute; auto.
assert ([|31-p|]=31-[|p|]).
unfold sub31; rewrite phi_phi_inv.
change [|31|] with 31%Z.
apply Zmod_small; auto with zarith.
rewrite spec_add_mul_div by (rewrite H4; auto with zarith).
change [|0|] with 0%Z; rewrite Zdiv_0_l, Z.add_0_r.
rewrite H4.
apply shift_unshift_mod_2; simpl; auto with zarith.
Qed.
(** Shift operations *)
Lemma spec_head00: forall x, [|x|] = 0 -> [|head031 x|] = Zpos 31.
Proof.
intros.
generalize (phi_inv_phi x).
rewrite H; simpl phi_inv.
intros H'; rewrite <- H'.
simpl; auto.
Qed.
Fixpoint head031_alt n x :=
match n with
| O => 0%nat
| S n => match firstl x with
| D0 => S (head031_alt n (shiftl x))
| D1 => 0%nat
end
end.
Lemma head031_equiv :
forall x, [|head031 x|] = Z.of_nat (head031_alt size x).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H).
simpl; auto.
unfold head031, recl.
change On with (phi_inv (Z.of_nat (31-size))).
replace (head031_alt size x) with
(head031_alt size x + (31 - size))%nat by auto.
assert (size <= 31)%nat by auto with arith.
revert x H; induction size; intros.
simpl; auto.
unfold recl_aux; fold recl_aux.
unfold head031_alt; fold head031_alt.
rewrite H.
assert ([|phi_inv (Z.of_nat (31-S n))|] = Z.of_nat (31 - S n)).
rewrite phi_phi_inv.
apply Zmod_small.
split.
change 0 with (Z.of_nat O); apply inj_le; omega.
apply Z.le_lt_trans with (Z.of_nat 31).
apply inj_le; omega.
compute; auto.
case_eq (firstl x); intros; auto.
rewrite plus_Sn_m, plus_n_Sm.
replace (S (31 - S n)) with (31 - n)%nat by omega.
rewrite <- IHn; [ | omega | ].
f_equal; f_equal.
unfold add31.
rewrite H1.
f_equal.
change [|In|] with 1.
replace (31-n)%nat with (S (31 - S n))%nat by omega.
rewrite Nat2Z.inj_succ; ring.
clear - H H2.
rewrite (sneakr_shiftl x) in H.
rewrite H2 in H.
case_eq (iszero (shiftl x)); intros; auto.
rewrite (iszero_eq0 _ H0) in H; discriminate.
Qed.
Lemma phi_nz : forall x, 0 < [|x|] <-> x <> 0%int31.
Proof.
split; intros.
red; intro; subst x; discriminate.
assert ([|x|]<>0%Z).
contradict H.
rewrite <- (phi_inv_phi x); rewrite H; auto.
generalize (phi_bounded x); auto with zarith.
Qed.
Lemma spec_head0 : forall x, 0 < [|x|] ->
wB/ 2 <= 2 ^ ([|head031 x|]) * [|x|] < wB.
Proof.
intros.
rewrite head031_equiv.
assert (nshiftl x size = 0%int31).
apply nshiftl_size.
revert x H H0.
unfold size at 2 5.
induction size.
simpl Z.of_nat.
intros.
compute in H0; rewrite H0 in H; discriminate.
intros.
simpl head031_alt.
case_eq (firstl x); intros.
rewrite (Nat2Z.inj_succ (head031_alt n (shiftl x))), Z.pow_succ_r; auto with zarith.
rewrite <- Z.mul_assoc, Z.mul_comm, <- Z.mul_assoc, <-(Z.mul_comm 2).
rewrite <- Z.double_spec, <- (phi_twice_firstl _ H1).
apply IHn.
rewrite phi_nz; rewrite phi_nz in H; contradict H.
change twice with shiftl in H.
rewrite (sneakr_shiftl x), H1, H; auto.
rewrite <- nshiftl_S_tail; auto.
change (2^(Z.of_nat 0)) with 1; rewrite Z.mul_1_l.
generalize (phi_bounded x); unfold size; split; auto with zarith.
change (2^(Z.of_nat 31)/2) with (2^(Z.of_nat (pred size))).
apply phi_lowerbound; auto.
Qed.
Lemma spec_tail00: forall x, [|x|] = 0 -> [|tail031 x|] = Zpos 31.
Proof.
intros.
generalize (phi_inv_phi x).
rewrite H; simpl phi_inv.
intros H'; rewrite <- H'.
simpl; auto.
Qed.
Fixpoint tail031_alt n x :=
match n with
| O => 0%nat
| S n => match firstr x with
| D0 => S (tail031_alt n (shiftr x))
| D1 => 0%nat
end
end.
Lemma tail031_equiv :
forall x, [|tail031 x|] = Z.of_nat (tail031_alt size x).
Proof.
intros.
case_eq (iszero x); intros.
rewrite (iszero_eq0 _ H).
simpl; auto.
unfold tail031, recr.
change On with (phi_inv (Z.of_nat (31-size))).
replace (tail031_alt size x) with
(tail031_alt size x + (31 - size))%nat by auto.
assert (size <= 31)%nat by auto with arith.
revert x H; induction size; intros.
simpl; auto.
unfold recr_aux; fold recr_aux.
unfold tail031_alt; fold tail031_alt.
rewrite H.
assert ([|phi_inv (Z.of_nat (31-S n))|] = Z.of_nat (31 - S n)).
rewrite phi_phi_inv.
apply Zmod_small.
split.
change 0 with (Z.of_nat O); apply inj_le; omega.
apply Z.le_lt_trans with (Z.of_nat 31).
apply inj_le; omega.
compute; auto.
case_eq (firstr x); intros; auto.
rewrite plus_Sn_m, plus_n_Sm.
replace (S (31 - S n)) with (31 - n)%nat by omega.
rewrite <- IHn; [ | omega | ].
f_equal; f_equal.
unfold add31.
rewrite H1.
f_equal.
change [|In|] with 1.
replace (31-n)%nat with (S (31 - S n))%nat by omega.
rewrite Nat2Z.inj_succ; ring.
clear - H H2.
rewrite (sneakl_shiftr x) in H.
rewrite H2 in H.
case_eq (iszero (shiftr x)); intros; auto.
rewrite (iszero_eq0 _ H0) in H; discriminate.
Qed.
Lemma spec_tail0 : forall x, 0 < [|x|] ->
exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|tail031 x|]).
Proof.
intros.
rewrite tail031_equiv.
assert (nshiftr x size = 0%int31).
apply nshiftr_size.
revert x H H0.
induction size.
simpl Z.of_nat.
intros.
compute in H0; rewrite H0 in H; discriminate.
intros.
simpl tail031_alt.
case_eq (firstr x); intros.
rewrite (Nat2Z.inj_succ (tail031_alt n (shiftr x))), Z.pow_succ_r; auto with zarith.
destruct (IHn (shiftr x)) as (y & Hy1 & Hy2).
rewrite phi_nz; rewrite phi_nz in H; contradict H.
rewrite (sneakl_shiftr x), H1, H; auto.
rewrite <- nshiftr_S_tail; auto.
exists y; split; auto.
rewrite phi_eqn1; auto.
rewrite Z.double_spec, Hy2; ring.
exists [|shiftr x|].
split.
generalize (phi_bounded (shiftr x)); auto with zarith.
rewrite phi_eqn2; auto.
rewrite Z.succ_double_spec; simpl; ring.
Qed.
(* Sqrt *)
(* Direct transcription of an old proof
of a fortran program in boyer-moore *)
Lemma quotient_by_2 a: a - 1 <= (a/2) + (a/2).
Proof.
case (Z_mod_lt a 2); auto with zarith.
intros H1; rewrite Zmod_eq_full; auto with zarith.
Qed.
Lemma sqrt_main_trick j k: 0 <= j -> 0 <= k ->
(j * k) + j <= ((j + k)/2 + 1) ^ 2.
Proof.
intros Hj; generalize Hj k; pattern j; apply natlike_ind;
auto; clear k j Hj.
intros _ k Hk; repeat rewrite Z.add_0_l.
apply Z.mul_nonneg_nonneg; generalize (Z_div_pos k 2); auto with zarith.
intros j Hj Hrec _ k Hk; pattern k; apply natlike_ind; auto; clear k Hk.
rewrite Z.mul_0_r, Z.add_0_r, Z.add_0_l.
generalize (sqr_pos (Z.succ j / 2)) (quotient_by_2 (Z.succ j));
unfold Z.succ.
rewrite Z.pow_2_r, Z.mul_add_distr_r; repeat rewrite Z.mul_add_distr_l.
auto with zarith.
intros k Hk _.
replace ((Z.succ j + Z.succ k) / 2) with ((j + k)/2 + 1).
generalize (Hrec Hj k Hk) (quotient_by_2 (j + k)).
unfold Z.succ; repeat rewrite Z.pow_2_r;
repeat rewrite Z.mul_add_distr_r; repeat rewrite Z.mul_add_distr_l.
repeat rewrite Z.mul_1_l; repeat rewrite Z.mul_1_r.
auto with zarith.
rewrite Z.add_comm, <- Z_div_plus_full_l; auto with zarith.
apply f_equal2 with (f := Z.div); auto with zarith.
Qed.
Lemma sqrt_main i j: 0 <= i -> 0 < j -> i < ((j + (i/j))/2 + 1) ^ 2.
Proof.
intros Hi Hj.
assert (Hij: 0 <= i/j) by (apply Z_div_pos; auto with zarith).
apply Z.lt_le_trans with (2 := sqrt_main_trick _ _ (Z.lt_le_incl _ _ Hj) Hij).
pattern i at 1; rewrite (Z_div_mod_eq i j); case (Z_mod_lt i j); auto with zarith.
Qed.
Lemma sqrt_init i: 1 < i -> i < (i/2 + 1) ^ 2.
Proof.
intros Hi.
assert (H1: 0 <= i - 2) by auto with zarith.
assert (H2: 1 <= (i / 2) ^ 2); auto with zarith.
replace i with (1* 2 + (i - 2)); auto with zarith.
rewrite Z.pow_2_r, Z_div_plus_full_l; auto with zarith.
generalize (sqr_pos ((i - 2)/ 2)) (Z_div_pos (i - 2) 2).
rewrite Z.mul_add_distr_r; repeat rewrite Z.mul_add_distr_l.
auto with zarith.
generalize (quotient_by_2 i).
rewrite Z.pow_2_r in H2 |- *;
repeat (rewrite Z.mul_add_distr_r ||
rewrite Z.mul_add_distr_l ||
rewrite Z.mul_1_l || rewrite Z.mul_1_r).
auto with zarith.
Qed.
Lemma sqrt_test_true i j: 0 <= i -> 0 < j -> i/j >= j -> j ^ 2 <= i.
Proof.
intros Hi Hj Hd; rewrite Z.pow_2_r.
apply Z.le_trans with (j * (i/j)); auto with zarith.
apply Z_mult_div_ge; auto with zarith.
Qed.
Lemma sqrt_test_false i j: 0 <= i -> 0 < j -> i/j < j -> (j + (i/j))/2 < j.
Proof.
intros Hi Hj H; case (Z.le_gt_cases j ((j + (i/j))/2)); auto.
intros H1; contradict H; apply Z.le_ngt.
assert (2 * j <= j + (i/j)); auto with zarith.
apply Z.le_trans with (2 * ((j + (i/j))/2)); auto with zarith.
apply Z_mult_div_ge; auto with zarith.
Qed.
Lemma sqrt31_step_def rec i j:
sqrt31_step rec i j =
match (fst (i/j) ?= j)%int31 with
Lt => rec i (fst ((j + fst(i/j))/2))%int31
| _ => j
end.
Proof.
unfold sqrt31_step; case div31; intros.
simpl; case compare31; auto.
Qed.
Lemma div31_phi i j: 0 < [|j|] -> [|fst (i/j)%int31|] = [|i|]/[|j|].
intros Hj; generalize (spec_div i j Hj).
case div31; intros q r; simpl @fst.
intros (H1,H2); apply Zdiv_unique with [|r|]; auto with zarith.
rewrite H1; ring.
Qed.
Lemma sqrt31_step_correct rec i j:
0 < [|i|] -> 0 < [|j|] -> [|i|] < ([|j|] + 1) ^ 2 ->
2 * [|j|] < wB ->
(forall j1 : int31,
0 < [|j1|] < [|j|] -> [|i|] < ([|j1|] + 1) ^ 2 ->
[|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) ->
[|sqrt31_step rec i j|] ^ 2 <= [|i|] < ([|sqrt31_step rec i j|] + 1) ^ 2.
Proof.
assert (Hp2: 0 < [|2|]) by exact (eq_refl Lt).
intros Hi Hj Hij H31 Hrec; rewrite sqrt31_step_def.
rewrite spec_compare, div31_phi; auto.
case Z.compare_spec; auto; intros Hc;
try (split; auto; apply sqrt_test_true; auto with zarith; fail).
assert (E : [|(j + fst (i / j)%int31)|] = [|j|] + [|i|] / [|j|]).
{ rewrite spec_add, div31_phi; auto using Z.mod_small with zarith. }
apply Hrec; rewrite !div31_phi, E; auto using sqrt_main with zarith.
split; try apply sqrt_test_false; auto with zarith.
apply Z.le_succ_l in Hj. change (1 <= [|j|]) in Hj.
Z.le_elim Hj.
- replace ([|j|] + [|i|]/[|j|]) with
(1 * 2 + (([|j|] - 2) + [|i|] / [|j|])) by ring.
rewrite Z_div_plus_full_l; auto with zarith.
assert (0 <= [|i|]/ [|j|]) by auto with zarith.
assert (0 <= ([|j|] - 2 + [|i|] / [|j|]) / [|2|]); auto with zarith.
- rewrite <- Hj, Zdiv_1_r.
replace (1 + [|i|]) with (1 * 2 + ([|i|] - 1)) by ring.
rewrite Z_div_plus_full_l; auto with zarith.
assert (0 <= ([|i|] - 1) /2) by auto with zarith.
change ([|2|]) with 2; auto with zarith.
Qed.
Lemma iter31_sqrt_correct n rec i j: 0 < [|i|] -> 0 < [|j|] ->
[|i|] < ([|j|] + 1) ^ 2 -> 2 * [|j|] < 2 ^ (Z.of_nat size) ->
(forall j1, 0 < [|j1|] -> 2^(Z.of_nat n) + [|j1|] <= [|j|] ->
[|i|] < ([|j1|] + 1) ^ 2 -> 2 * [|j1|] < 2 ^ (Z.of_nat size) ->
[|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) ->
[|iter31_sqrt n rec i j|] ^ 2 <= [|i|] < ([|iter31_sqrt n rec i j|] + 1) ^ 2.
Proof.
revert rec i j; elim n; unfold iter31_sqrt; fold iter31_sqrt; clear n.
intros rec i j Hi Hj Hij H31 Hrec; apply sqrt31_step_correct; auto with zarith.
intros; apply Hrec; auto with zarith.
rewrite Z.pow_0_r; auto with zarith.
intros n Hrec rec i j Hi Hj Hij H31 HHrec.
apply sqrt31_step_correct; auto.
intros j1 Hj1 Hjp1; apply Hrec; auto with zarith.
intros j2 Hj2 H2j2 Hjp2 Hj31; apply Hrec; auto with zarith.
intros j3 Hj3 Hpj3.
apply HHrec; auto.
rewrite Nat2Z.inj_succ, Z.pow_succ_r.
apply Z.le_trans with (2 ^Z.of_nat n + [|j2|]); auto with zarith.
apply Nat2Z.is_nonneg.
Qed.
Lemma spec_sqrt : forall x,
[|sqrt31 x|] ^ 2 <= [|x|] < ([|sqrt31 x|] + 1) ^ 2.
Proof.
intros i; unfold sqrt31.
rewrite spec_compare. case Z.compare_spec; change [|1|] with 1;
intros Hi; auto with zarith.
repeat rewrite Z.pow_2_r; auto with zarith.
apply iter31_sqrt_correct; auto with zarith.
rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
replace ([|i|]) with (1 * 2 + ([|i|] - 2))%Z; try ring.
assert (0 <= ([|i|] - 2)/2)%Z by (apply Z_div_pos; auto with zarith).
rewrite Z_div_plus_full_l; auto with zarith.
rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
apply sqrt_init; auto.
rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
apply Z.le_lt_trans with ([|i|]).
apply Z_mult_div_ge; auto with zarith.
case (phi_bounded i); auto.
intros j2 H1 H2; contradict H2; apply Z.lt_nge.
rewrite div31_phi; change ([|2|]) with 2; auto with zarith.
apply Z.le_lt_trans with ([|i|]); auto with zarith.
assert (0 <= [|i|]/2)%Z by (apply Z_div_pos; auto with zarith).
apply Z.le_trans with (2 * ([|i|]/2)); auto with zarith.
apply Z_mult_div_ge; auto with zarith.
case (phi_bounded i); unfold size; auto with zarith.
change [|0|] with 0; auto with zarith.
case (phi_bounded i); repeat rewrite Z.pow_2_r; auto with zarith.
Qed.
Lemma sqrt312_step_def rec ih il j:
sqrt312_step rec ih il j =
match (ih ?= j)%int31 with
Eq => j
| Gt => j
| _ =>
match (fst (div3121 ih il j) ?= j)%int31 with
Lt => let m := match j +c fst (div3121 ih il j) with
C0 m1 => fst (m1/2)%int31
| C1 m1 => (fst (m1/2) + v30)%int31
end in rec ih il m
| _ => j
end
end.
Proof.
unfold sqrt312_step; case div3121; intros.
simpl; case compare31; auto.
Qed.
Lemma sqrt312_lower_bound ih il j:
phi2 ih il < ([|j|] + 1) ^ 2 -> [|ih|] <= [|j|].
Proof.
intros H1.
case (phi_bounded j); intros Hbj _.
case (phi_bounded il); intros Hbil _.
case (phi_bounded ih); intros Hbih Hbih1.
assert ([|ih|] < [|j|] + 1); auto with zarith.
apply Z.square_lt_simpl_nonneg; auto with zarith.
rewrite <- ?Z.pow_2_r; apply Z.le_lt_trans with (2 := H1).
apply Z.le_trans with ([|ih|] * wB).
- rewrite ? Z.pow_2_r; auto with zarith.
- unfold phi2. change base with wB; auto with zarith.
Qed.
Lemma div312_phi ih il j: (2^30 <= [|j|] -> [|ih|] < [|j|] ->
[|fst (div3121 ih il j)|] = phi2 ih il/[|j|])%Z.
Proof.
intros Hj Hj1.
generalize (spec_div21 ih il j Hj Hj1).
case div3121; intros q r (Hq, Hr).
apply Zdiv_unique with (phi r); auto with zarith.
simpl @fst; apply eq_trans with (1 := Hq); ring.
Qed.
Lemma sqrt312_step_correct rec ih il j:
2 ^ 29 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
(forall j1, 0 < [|j1|] < [|j|] -> phi2 ih il < ([|j1|] + 1) ^ 2 ->
[|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) ->
[|sqrt312_step rec ih il j|] ^ 2 <= phi2 ih il
< ([|sqrt312_step rec ih il j|] + 1) ^ 2.
Proof.
assert (Hp2: (0 < [|2|])%Z) by exact (eq_refl Lt).
intros Hih Hj Hij Hrec; rewrite sqrt312_step_def.
assert (H1: ([|ih|] <= [|j|])) by (apply sqrt312_lower_bound with il; auto).
case (phi_bounded ih); intros Hih1 _.
case (phi_bounded il); intros Hil1 _.
case (phi_bounded j); intros _ Hj1.
assert (Hp3: (0 < phi2 ih il)).
{ unfold phi2; apply Z.lt_le_trans with ([|ih|] * base); auto with zarith.
apply Z.mul_pos_pos; auto with zarith.
apply Z.lt_le_trans with (2:= Hih); auto with zarith. }
rewrite spec_compare. case Z.compare_spec; intros Hc1.
- split; auto.
apply sqrt_test_true; auto.
+ unfold phi2, base; auto with zarith.
+ unfold phi2; rewrite Hc1.
assert (0 <= [|il|]/[|j|]) by (apply Z_div_pos; auto with zarith).
rewrite Z.mul_comm, Z_div_plus_full_l; auto with zarith.
change base with wB. auto with zarith.
- case (Z.le_gt_cases (2 ^ 30) [|j|]); intros Hjj.
+ rewrite spec_compare; case Z.compare_spec;
rewrite div312_phi; auto; intros Hc;
try (split; auto; apply sqrt_test_true; auto with zarith; fail).
apply Hrec.
* assert (Hf1: 0 <= phi2 ih il/ [|j|]) by auto with zarith.
apply Z.le_succ_l in Hj. change (1 <= [|j|]) in Hj.
Z.le_elim Hj;
[ | contradict Hc; apply Z.le_ngt;
rewrite <- Hj, Zdiv_1_r; auto with zarith ].
assert (Hf3: 0 < ([|j|] + phi2 ih il / [|j|]) / 2).
{ replace ([|j|] + phi2 ih il/ [|j|]) with
(1 * 2 + (([|j|] - 2) + phi2 ih il / [|j|])); try ring.
rewrite Z_div_plus_full_l; auto with zarith.
assert (0 <= ([|j|] - 2 + phi2 ih il / [|j|]) / 2) ;
auto with zarith. }
assert (Hf4: ([|j|] + phi2 ih il / [|j|]) / 2 < [|j|]).
{ apply sqrt_test_false; auto with zarith. }
generalize (spec_add_c j (fst (div3121 ih il j))).
unfold interp_carry; case add31c; intros r;
rewrite div312_phi; auto with zarith.
{ rewrite div31_phi; change [|2|] with 2; auto with zarith.
intros HH; rewrite HH; clear HH; auto with zarith. }
{ rewrite spec_add, div31_phi; change [|2|] with 2; auto.
rewrite Z.mul_1_l; intros HH.
rewrite Z.add_comm, <- Z_div_plus_full_l; auto with zarith.
change (phi v30 * 2) with (2 ^ Z.of_nat size).
rewrite HH, Zmod_small; auto with zarith. }
* replace (phi _) with (([|j|] + (phi2 ih il)/([|j|]))/2);
[ apply sqrt_main; auto with zarith | ].
generalize (spec_add_c j (fst (div3121 ih il j))).
unfold interp_carry; case add31c; intros r;
rewrite div312_phi; auto with zarith.
{ rewrite div31_phi; auto with zarith.
intros HH; rewrite HH; auto with zarith. }
{ intros HH; rewrite <- HH.
change (1 * 2 ^ Z.of_nat size) with (phi (v30) * 2).
rewrite Z_div_plus_full_l; auto with zarith.
rewrite Z.add_comm.
rewrite spec_add, Zmod_small.
- rewrite div31_phi; auto.
- split; auto with zarith.
+ case (phi_bounded (fst (r/2)%int31));
case (phi_bounded v30); auto with zarith.
+ rewrite div31_phi; change (phi 2) with 2; auto.
change (2 ^Z.of_nat size) with (base/2 + phi v30).
assert (phi r / 2 < base/2); auto with zarith.
apply Z.mul_lt_mono_pos_r with 2; auto with zarith.
change (base/2 * 2) with base.
apply Z.le_lt_trans with (phi r).
* rewrite Z.mul_comm; apply Z_mult_div_ge; auto with zarith.
* case (phi_bounded r); auto with zarith. }
+ contradict Hij; apply Z.le_ngt.
assert ((1 + [|j|]) <= 2 ^ 30); auto with zarith.
apply Z.le_trans with ((2 ^ 30) * (2 ^ 30)); auto with zarith.
* assert (0 <= 1 + [|j|]); auto with zarith.
apply Z.mul_le_mono_nonneg; auto with zarith.
* change ((2 ^ 30) * (2 ^ 30)) with ((2 ^ 29) * base).
apply Z.le_trans with ([|ih|] * base);
change wB with base in *; auto with zarith.
unfold phi2, base; auto with zarith.
- split; auto.
apply sqrt_test_true; auto.
+ unfold phi2, base; auto with zarith.
+ apply Z.le_ge; apply Z.le_trans with (([|j|] * base)/[|j|]).
* rewrite Z.mul_comm, Z_div_mult; auto with zarith.
* apply Z.ge_le; apply Z_div_ge; auto with zarith.
Qed.
Lemma iter312_sqrt_correct n rec ih il j:
2^29 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.50 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|