(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * DecimalN
Proofs that conversions between decimal numbers and [N]
are bijections *)
Require Import Decimal DecimalFacts DecimalPos PArith NArith.
Module Unsigned.
Lemma of_to (n:N) : N.of_uint (N.to_uint n) = n.
Proof.
destruct n.
- reflexivity.
- apply DecimalPos.Unsigned.of_to.
Qed.
Lemma to_of (d:uint) : N.to_uint (N.of_uint d) = unorm d.
Proof.
exact (DecimalPos.Unsigned.to_of d).
Qed.
Lemma to_uint_inj n n' : N.to_uint n = N.to_uint n' -> n = n'.
Proof.
intros E. now rewrite <- (of_to n), <- (of_to n'), E.
Qed.
Lemma to_uint_surj d : exists p, N.to_uint p = unorm d.
Proof.
exists (N.of_uint d). apply to_of.
Qed.
Lemma of_uint_norm d : N.of_uint (unorm d) = N.of_uint d.
Proof.
now induction d.
Qed.
Lemma of_inj d d' :
N.of_uint d = N.of_uint d' -> unorm d = unorm d'.
Proof.
intros. rewrite <- !to_of. now f_equal.
Qed.
Lemma of_iff d d' : N.of_uint d = N.of_uint d' <-> unorm d = unorm d'.
Proof.
split. apply of_inj. intros E. rewrite <- of_uint_norm, E.
apply of_uint_norm.
Qed.
End Unsigned.
(** Conversion from/to signed decimal numbers *)
Module Signed.
Lemma of_to (n:N) : N.of_int (N.to_int n) = Some n.
Proof.
unfold N.to_int, N.of_int, norm. f_equal.
rewrite Unsigned.of_uint_norm. apply Unsigned.of_to.
Qed.
Lemma to_of (d:int)(n:N) : N.of_int d = Some n -> N.to_int n = norm d.
Proof.
unfold N.of_int.
destruct (norm d) eqn:Hd; intros [= <-].
unfold N.to_int. rewrite Unsigned.to_of. f_equal.
revert Hd; destruct d; simpl.
- intros [= <-]. apply unorm_invol.
- destruct (nzhead d); now intros [= <-].
Qed.
Lemma to_int_inj n n' : N.to_int n = N.to_int n' -> n = n'.
Proof.
intro E.
assert (E' : Some n = Some n').
{ now rewrite <- (of_to n), <- (of_to n'), E. }
now injection E'.
Qed.
Lemma to_int_pos_surj d : exists n, N.to_int n = norm (Pos d).
Proof.
exists (N.of_uint d). unfold N.to_int. now rewrite Unsigned.to_of.
Qed.
Lemma of_int_norm d : N.of_int (norm d) = N.of_int d.
Proof.
unfold N.of_int. now rewrite norm_invol.
Qed.
Lemma of_inj_pos d d' :
N.of_int (Pos d) = N.of_int (Pos d') -> unorm d = unorm d'.
Proof.
unfold N.of_int. simpl. intros [= H]. apply Unsigned.of_inj.
change Pos.of_uint with N.of_uint in H.
now rewrite <- Unsigned.of_uint_norm, H, Unsigned.of_uint_norm.
Qed.
End Signed.
¤ Dauer der Verarbeitung: 0.1 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|