(* Author: Tobias Nipkow *)
section \<open>1-2 Brother Tree Implementation of Maps\<close>
theory Brother12_Map
imports
Brother12_Set
Map_Specs
begin
fun lookup :: "('a \ 'b) bro \ 'a::linorder \ 'b option" where
"lookup N0 x = None" |
"lookup (N1 t) x = lookup t x" |
"lookup (N2 l (a,b) r) x =
(case cmp x a of
LT \<Rightarrow> lookup l x |
EQ \<Rightarrow> Some b |
GT \<Rightarrow> lookup r x)"
locale update = insert
begin
fun upd :: "'a::linorder \ 'b \ ('a\'b) bro \ ('a\'b) bro" where
"upd x y N0 = L2 (x,y)" |
"upd x y (N1 t) = n1 (upd x y t)" |
"upd x y (N2 l (a,b) r) =
(case cmp x a of
LT \<Rightarrow> n2 (upd x y l) (a,b) r |
EQ \<Rightarrow> N2 l (a,y) r |
GT \<Rightarrow> n2 l (a,b) (upd x y r))"
definition update :: "'a::linorder \ 'b \ ('a\'b) bro \ ('a\'b) bro" where
"update x y t = tree(upd x y t)"
end
context delete
begin
fun del :: "'a::linorder \ ('a\'b) bro \ ('a\'b) bro" where
"del _ N0 = N0" |
"del x (N1 t) = N1 (del x t)" |
"del x (N2 l (a,b) r) =
(case cmp x a of
LT \<Rightarrow> n2 (del x l) (a,b) r |
GT \<Rightarrow> n2 l (a,b) (del x r) |
EQ \<Rightarrow> (case split_min r of
None \<Rightarrow> N1 l |
Some (ab, r') \ n2 l ab r'))"
definition delete :: "'a::linorder \ ('a\'b) bro \ ('a\'b) bro" where
"delete a t = tree (del a t)"
end
subsection "Functional Correctness Proofs"
subsubsection "Proofs for lookup"
lemma lookup_map_of: "t \ T h \
sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x"
by(induction h arbitrary: t) (auto simp: map_of_simps split: option.splits)
subsubsection "Proofs for update"
context update
begin
lemma inorder_upd: "t \ T h \
sorted1(inorder t) \<Longrightarrow> inorder(upd x y t) = upd_list x y (inorder t)"
by(induction h arbitrary: t) (auto simp: upd_list_simps inorder_n1 inorder_n2)
lemma inorder_update: "t \ T h \
sorted1(inorder t) \<Longrightarrow> inorder(update x y t) = upd_list x y (inorder t)"
by(simp add: update_def inorder_upd inorder_tree)
end
subsubsection \<open>Proofs for deletion\<close>
context delete
begin
lemma inorder_del:
"t \ T h \ sorted1(inorder t) \ inorder(del x t) = del_list x (inorder t)"
by(induction h arbitrary: t) (auto simp: del_list_simps inorder_n2
inorder_split_min[OF UnI1] inorder_split_min[OF UnI2] split: option.splits)
lemma inorder_delete:
"t \ T h \ sorted1(inorder t) \ inorder(delete x t) = del_list x (inorder t)"
by(simp add: delete_def inorder_del inorder_tree)
end
subsection \<open>Invariant Proofs\<close>
subsubsection \<open>Proofs for update\<close>
context update
begin
lemma upd_type:
"(t \ B h \ upd x y t \ Bp h) \ (t \ U h \ upd x y t \ T h)"
apply(induction h arbitrary: t)
apply (simp)
apply (fastforce simp: Bp_if_B n2_type dest: n1_type)
done
lemma update_type:
"t \ B h \ update x y t \ B h \ B (Suc h)"
unfolding update_def by (metis upd_type tree_type)
end
subsubsection "Proofs for deletion"
context delete
begin
lemma del_type:
"t \ B h \ del x t \ T h"
"t \ U h \ del x t \ Um h"
proof (induction h arbitrary: x t)
case (Suc h)
{ case 1
then obtain l a b r where [simp]: "t = N2 l (a,b) r" and
lr: "l \ T h" "r \ T h" "l \ B h \ r \ B h" by auto
have ?case if "x < a"
proof cases
assume "l \ B h"
from n2_type3[OF Suc.IH(1)[OF this] lr(2)]
show ?thesis using \<open>x<a\<close> by(simp)
next
assume "l \ B h"
hence "l \ U h" "r \ B h" using lr by auto
from n2_type1[OF Suc.IH(2)[OF this(1)] this(2)]
show ?thesis using \<open>x<a\<close> by(simp)
qed
moreover
have ?case if "x > a"
proof cases
assume "r \ B h"
from n2_type3[OF lr(1) Suc.IH(1)[OF this]]
show ?thesis using \<open>x>a\<close> by(simp)
next
assume "r \ B h"
hence "l \ B h" "r \ U h" using lr by auto
from n2_type2[OF this(1) Suc.IH(2)[OF this(2)]]
show ?thesis using \<open>x>a\<close> by(simp)
qed
moreover
have ?case if [simp]: "x=a"
proof (cases "split_min r")
case None
show ?thesis
proof cases
assume "r \ B h"
with split_minNoneN0[OF this None] lr show ?thesis by(simp)
next
assume "r \ B h"
hence "r \ U h" using lr by auto
with split_minNoneN1[OF this None] lr(3) show ?thesis by (simp)
qed
next
case [simp]: (Some br')
obtain b r' where [simp]: "br' = (b,r')" by fastforce
show ?thesis
proof cases
assume "r \ B h"
from split_min_type(1)[OF this] n2_type3[OF lr(1)]
show ?thesis by simp
next
assume "r \ B h"
hence "l \ B h" and "r \ U h" using lr by auto
from split_min_type(2)[OF this(2)] n2_type2[OF this(1)]
show ?thesis by simp
qed
qed
ultimately show ?case by auto
}
{ case 2 with Suc.IH(1) show ?case by auto }
qed auto
lemma delete_type:
"t \ B h \ delete x t \ B h \ B(h-1)"
unfolding delete_def
by (cases h) (simp, metis del_type(1) tree_type Suc_eq_plus1 diff_Suc_1)
end
subsection "Overall correctness"
interpretation Map_by_Ordered
where empty = empty and lookup = lookup and update = update.update
and delete = delete.delete and inorder = inorder and inv = "\t. \h. t \ B h"
proof (standard, goal_cases)
case 2 thus ?case by(auto intro!: lookup_map_of)
next
case 3 thus ?case by(auto intro!: update.inorder_update)
next
case 4 thus ?case by(auto intro!: delete.inorder_delete)
next
case 6 thus ?case using update.update_type by (metis Un_iff)
next
case 7 thus ?case using delete.delete_type by blast
qed (auto simp: empty_def)
end
¤ Dauer der Verarbeitung: 0.2 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|