|
|
Quellcode-Bibliothek
© Kompilation durch diese Firma
[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]
Datei:
Trie_Map.thy
Sprache: Isabelle
|
|
(* Author: Tobias Nipkow *)
section \<open>Alternative Deletion in Red-Black Trees\<close>
theory RBT_Set2
imports RBT_Set
begin
text \<open>This is a conceptually simpler version of deletion. Instead of the tricky \<open>join\<close>
function this version follows the standard approach of replacing the deleted element
(in function \<open>del\<close>) by the minimal element in its right subtree.\<close>
fun split_min :: "'a rbt \ 'a \ 'a rbt" where
"split_min (Node l (a, _) r) =
(if l = Leaf then (a,r)
else let (x,l') = split_min l
in (x, if color l = Black then baldL l' a r else R l' a r))"
fun del :: "'a::linorder \ 'a rbt \ 'a rbt" where
"del x Leaf = Leaf" |
"del x (Node l (a, _) r) =
(case cmp x a of
LT \<Rightarrow> let l' = del x l in if l \<noteq> Leaf \<and> color l = Black
then baldL l' a r else R l' a r |
GT \<Rightarrow> let r' = del x r in if r \<noteq> Leaf \<and> color r = Black
then baldR l a r' else R l a r' |
EQ \<Rightarrow> if r = Leaf then l else let (a',r') = split_min r in
if color r = Black then baldR l a' r' else R l a' r')"
text \<open>The first two \<open>let\<close>s speed up the automatic proof of \<open>inv_del\<close> below.\<close>
definition delete :: "'a::linorder \ 'a rbt \ 'a rbt" where
"delete x t = paint Black (del x t)"
subsection "Functional Correctness Proofs"
declare Let_def[simp]
lemma split_minD:
"split_min t = (x,t') \ t \ Leaf \ x # inorder t' = inorder t"
by(induction t arbitrary: t' rule: split_min.induct)
(auto simp: inorder_baldL sorted_lems split: prod.splits if_splits)
lemma inorder_del:
"sorted(inorder t) \ inorder(del x t) = del_list x (inorder t)"
by(induction x t rule: del.induct)
(auto simp: del_list_simps inorder_baldL inorder_baldR split_minD split: prod.splits)
lemma inorder_delete:
"sorted(inorder t) \ inorder(delete x t) = del_list x (inorder t)"
by (auto simp: delete_def inorder_del inorder_paint)
subsection \<open>Structural invariants\<close>
lemma neq_Red[simp]: "(c \ Red) = (c = Black)"
by (cases c) auto
subsubsection \<open>Deletion\<close>
lemma inv_split_min: "\ split_min t = (x,t'); t \ Leaf; invh t; invc t \ \
invh t' \
(color t = Red \<longrightarrow> bheight t' = bheight t \<and> invc t') \<and>
(color t = Black \<longrightarrow> bheight t' = bheight t - 1 \<and> invc2 t')"
apply(induction t arbitrary: x t' rule: split_min.induct)
apply(auto simp: inv_baldR inv_baldL invc2I dest!: neq_LeafD
split: if_splits prod.splits)
done
text \<open>An automatic proof. It is quite brittle, e.g. inlining the \<open>let\<close>s in @{const del} breaks it.\<close>
lemma inv_del: "\ invh t; invc t \ \
invh (del x t) \<and>
(color t = Red \<longrightarrow> bheight (del x t) = bheight t \<and> invc (del x t)) \<and>
(color t = Black \<longrightarrow> bheight (del x t) = bheight t - 1 \<and> invc2 (del x t))"
apply(induction x t rule: del.induct)
apply(auto simp: inv_baldR inv_baldL invc2I dest!: inv_split_min dest: neq_LeafD
split!: prod.splits if_splits)
done
text\<open>A structured proof where one can see what is used in each case.\<close>
lemma inv_del2: "\ invh t; invc t \ \
invh (del x t) \<and>
(color t = Red \<longrightarrow> bheight (del x t) = bheight t \<and> invc (del x t)) \<and>
(color t = Black \<longrightarrow> bheight (del x t) = bheight t - 1 \<and> invc2 (del x t))"
proof(induction x t rule: del.induct)
case (1 x)
then show ?case by simp
next
case (2 x l a c r)
note if_split[split del]
show ?case
proof cases
assume "x < a"
show ?thesis
proof cases (* For readability; could be automated more: *)
assume *: "l \ Leaf \ color l = Black"
hence "bheight l > 0" using neq_LeafD[of l] by auto
thus ?thesis using \<open>x < a\<close> "2.IH"(1) "2.prems" inv_baldL[of "del x l"] * by(auto)
next
assume "\(l \ Leaf \ color l = Black)"
thus ?thesis using \<open>x < a\<close> "2.prems" "2.IH"(1) by(auto)
qed
next (* more automation: *)
assume "\ x < a"
show ?thesis
proof cases
assume "x > a"
show ?thesis using \<open>a < x\<close> "2.IH"(2) "2.prems" neq_LeafD[of r] inv_baldR[of _ "del x r"]
by(auto split: if_split)
next
assume "\ x > a"
show ?thesis using "2.prems" \<open>\<not> x < a\<close> \<open>\<not> x > a\<close>
by(auto simp: inv_baldR invc2I dest!: inv_split_min dest: neq_LeafD split: prod.split if_split)
qed
qed
qed
theorem rbt_delete: "rbt t \ rbt (delete x t)"
by (metis delete_def rbt_def color_paint_Black inv_del invh_paint)
text \<open>Overall correctness:\<close>
interpretation S: Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete = delete
and inorder = inorder and inv = rbt
proof (standard, goal_cases)
case 1 show ?case by (simp add: empty_def)
next
case 2 thus ?case by(simp add: isin_set_inorder)
next
case 3 thus ?case by(simp add: inorder_insert)
next
case 4 thus ?case by(simp add: inorder_delete)
next
case 5 thus ?case by (simp add: rbt_def empty_def)
next
case 6 thus ?case by (simp add: rbt_insert)
next
case 7 thus ?case by (simp add: rbt_delete)
qed
end
¤ Dauer der Verarbeitung: 0.1 Sekunden
(vorverarbeitet)
¤
|
schauen Sie vor die Tür
Fenster
Die Firma ist wie angegeben erreichbar.
Die farbliche Syntaxdarstellung ist noch experimentell.
|
|
|
|
|