|
|
Quellcode-Bibliothek
© Kompilation durch diese Firma
[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]
Datei:
Quadratic_Reciprocity.thy
Sprache: Isabelle
|
|
(*
Author: Johannes Hoelzl, TU Muenchen
Coercions removed by Dmitriy Traytel
This file contains only general material about computing lower/upper bounds
on real functions. Approximation.thy contains the actual approximation algorithm
and the approximation oracle. This is in order to make a clear separation between
"morally immaculate" material about upper/lower bounds and the trusted oracle/reflection.
*)
theory Approximation_Bounds
imports
Complex_Main
"HOL-Library.Interval_Float"
Dense_Linear_Order
begin
declare powr_neg_one [simp]
declare powr_neg_numeral [simp]
context includes interval.lifting begin
section "Horner Scheme"
subsection \<open>Define auxiliary helper \<open>horner\<close> function\<close>
primrec horner :: "(nat \ nat) \ (nat \ nat \ nat) \ nat \ nat \ nat \ real \ real" where
"horner F G 0 i k x = 0" |
"horner F G (Suc n) i k x = 1 / k - x * horner F G n (F i) (G i k) x"
lemma horner_schema':
fixes x :: real and a :: "nat \ real"
shows "a 0 - x * (\ i=0.. i=0..
proof -
have shift_pow: "\i. - (x * ((-1)^i * a (Suc i) * x ^ i)) = (-1)^(Suc i) * a (Suc i) * x ^ (Suc i)"
by auto
show ?thesis
unfolding sum_distrib_left shift_pow uminus_add_conv_diff [symmetric] sum_negf[symmetric]
sum.atLeast_Suc_lessThan[OF zero_less_Suc]
sum.reindex[OF inj_Suc, unfolded comp_def, symmetric, of "\ n. (-1)^n *a n * x^n"] by auto
qed
lemma horner_schema:
fixes f :: "nat \ nat" and G :: "nat \ nat \ nat" and F :: "nat \ nat"
assumes f_Suc: "\n. f (Suc n) = G ((F ^^ n) s) (f n)"
shows "horner F G n ((F ^^ j') s) (f j') x = (\ j = 0..< n. (- 1) ^ j * (1 / (f (j' + j))) * x ^ j)"
proof (induct n arbitrary: j')
case 0
then show ?case by auto
next
case (Suc n)
show ?case unfolding horner.simps Suc[where j'="Suc j'", unfolded funpow.simps comp_def f_Suc]
using horner_schema'[of "\ j. 1 / (f (j' + j))"] by auto
qed
lemma horner_bounds':
fixes lb :: "nat \ nat \ nat \ float \ float" and ub :: "nat \ nat \ nat \ float \ float"
assumes "0 \ real_of_float x" and f_Suc: "\n. f (Suc n) = G ((F ^^ n) s) (f n)"
and lb_0: "\ i k x. lb 0 i k x = 0"
and lb_Suc: "\ n i k x. lb (Suc n) i k x = float_plus_down prec
(lapprox_rat prec 1 k)
(- float_round_up prec (x * (ub n (F i) (G i k) x)))"
and ub_0: "\ i k x. ub 0 i k x = 0"
and ub_Suc: "\ n i k x. ub (Suc n) i k x = float_plus_up prec
(rapprox_rat prec 1 k)
(- float_round_down prec (x * (lb n (F i) (G i k) x)))"
shows "(lb n ((F ^^ j') s) (f j') x) \ horner F G n ((F ^^ j') s) (f j') x \
horner F G n ((F ^^ j') s) (f j') x \<le> (ub n ((F ^^ j') s) (f j') x)"
(is "?lb n j' \ ?horner n j' \ ?horner n j' \ ?ub n j'")
proof (induct n arbitrary: j')
case 0
thus ?case unfolding lb_0 ub_0 horner.simps by auto
next
case (Suc n)
thus ?case using lapprox_rat[of prec 1 "f j'"] using rapprox_rat[of 1 "f j'" prec]
Suc[where j'="Suc j'"] \0 \ real_of_float x\
by (auto intro!: add_mono mult_left_mono float_round_down_le float_round_up_le
order_trans[OF add_mono[OF _ float_plus_down_le]]
order_trans[OF _ add_mono[OF _ float_plus_up_le]]
simp add: lb_Suc ub_Suc field_simps f_Suc)
qed
subsection "Theorems for floating point functions implementing the horner scheme"
text \<open>
Here \<^term_type>\<open>f :: nat \<Rightarrow> nat\<close> is the sequence defining the Taylor series, the coefficients are
all alternating and reciprocs. We use \<^term>\<open>G\<close> and \<^term>\<open>F\<close> to describe the computation of \<^term>\<open>f\<close>.
\<close>
lemma horner_bounds:
fixes F :: "nat \ nat" and G :: "nat \ nat \ nat"
assumes "0 \ real_of_float x" and f_Suc: "\n. f (Suc n) = G ((F ^^ n) s) (f n)"
and lb_0: "\ i k x. lb 0 i k x = 0"
and lb_Suc: "\ n i k x. lb (Suc n) i k x = float_plus_down prec
(lapprox_rat prec 1 k)
(- float_round_up prec (x * (ub n (F i) (G i k) x)))"
and ub_0: "\ i k x. ub 0 i k x = 0"
and ub_Suc: "\ n i k x. ub (Suc n) i k x = float_plus_up prec
(rapprox_rat prec 1 k)
(- float_round_down prec (x * (lb n (F i) (G i k) x)))"
shows "(lb n ((F ^^ j') s) (f j') x) \ (\j=0..
(is "?lb")
and "(\j=0.. (ub n ((F ^^ j') s) (f j') x)"
(is "?ub")
proof -
have "?lb \ ?ub"
using horner_bounds'[where lb=lb, OF \0 \ real_of_float x\ f_Suc lb_0 lb_Suc ub_0 ub_Suc]
unfolding horner_schema[where f=f, OF f_Suc] by simp
thus "?lb" and "?ub" by auto
qed
lemma horner_bounds_nonpos:
fixes F :: "nat \ nat" and G :: "nat \ nat \ nat"
assumes "real_of_float x \ 0" and f_Suc: "\n. f (Suc n) = G ((F ^^ n) s) (f n)"
and lb_0: "\ i k x. lb 0 i k x = 0"
and lb_Suc: "\ n i k x. lb (Suc n) i k x = float_plus_down prec
(lapprox_rat prec 1 k)
(float_round_down prec (x * (ub n (F i) (G i k) x)))"
and ub_0: "\ i k x. ub 0 i k x = 0"
and ub_Suc: "\ n i k x. ub (Suc n) i k x = float_plus_up prec
(rapprox_rat prec 1 k)
(float_round_up prec (x * (lb n (F i) (G i k) x)))"
shows "(lb n ((F ^^ j') s) (f j') x) \ (\j=0..
and "(\j=0.. (ub n ((F ^^ j') s) (f j') x)" (is "?ub")
proof -
have diff_mult_minus: "x - y * z = x + - y * z" for x y z :: float by simp
have sum_eq: "(\j=0..
(\<Sum>j = 0..<n. (- 1) ^ j * (1 / (f (j' + j))) * real_of_float (- x) ^ j)"
by (auto simp add: field_simps power_mult_distrib[symmetric])
have "0 \ real_of_float (-x)" using assms by auto
from horner_bounds[where G=G and F=F and f=f and s=s and prec=prec
and lb="\ n i k x. lb n i k (-x)" and ub="\ n i k x. ub n i k (-x)",
unfolded lb_Suc ub_Suc diff_mult_minus,
OF this f_Suc lb_0 _ ub_0 _]
show "?lb" and "?ub" unfolding minus_minus sum_eq
by (auto simp: minus_float_round_up_eq minus_float_round_down_eq)
qed
subsection \<open>Selectors for next even or odd number\<close>
text \<open>
The horner scheme computes alternating series. To get the upper and lower bounds we need to
guarantee to access a even or odd member. To do this we use \<^term>\<open>get_odd\<close> and \<^term>\<open>get_even\<close>.
\<close>
definition get_odd :: "nat \ nat" where
"get_odd n = (if odd n then n else (Suc n))"
definition get_even :: "nat \ nat" where
"get_even n = (if even n then n else (Suc n))"
lemma get_odd[simp]: "odd (get_odd n)"
unfolding get_odd_def by (cases "odd n") auto
lemma get_even[simp]: "even (get_even n)"
unfolding get_even_def by (cases "even n") auto
lemma get_odd_ex: "\ k. Suc k = get_odd n \ odd (Suc k)"
by (auto simp: get_odd_def odd_pos intro!: exI[of _ "n - 1"])
lemma get_even_double: "\i. get_even n = 2 * i"
using get_even by (blast elim: evenE)
lemma get_odd_double: "\i. get_odd n = 2 * i + 1"
using get_odd by (blast elim: oddE)
section "Power function"
definition float_power_bnds :: "nat \ nat \ float \ float \ float * float" where
"float_power_bnds prec n l u =
(if 0 < l then (power_down_fl prec l n, power_up_fl prec u n)
else if odd n then
(- power_up_fl prec \<bar>l\<bar> n,
if u < 0 then - power_down_fl prec \<bar>u\<bar> n else power_up_fl prec u n)
else if u < 0 then (power_down_fl prec \<bar>u\<bar> n, power_up_fl prec \<bar>l\<bar> n)
else (0, power_up_fl prec (max \<bar>l\<bar> \<bar>u\<bar>) n))"
lemma le_minus_power_downI: "0 \ x \ x ^ n \ - a \ a \ - power_down prec x n"
by (subst le_minus_iff) (auto intro: power_down_le power_mono_odd)
lemma float_power_bnds:
"(l1, u1) = float_power_bnds prec n l u \ x \ {l .. u} \ (x::real) ^ n \ {l1..u1}"
by (auto
simp: float_power_bnds_def max_def real_power_up_fl real_power_down_fl minus_le_iff
split: if_split_asm
intro!: power_up_le power_down_le le_minus_power_downI
intro: power_mono_odd power_mono power_mono_even zero_le_even_power)
lemma bnds_power:
"\(x::real) l u. (l1, u1) = float_power_bnds prec n l u \ x \ {l .. u} \
l1 \<le> x ^ n \<and> x ^ n \<le> u1"
using float_power_bnds by auto
lift_definition power_float_interval :: "nat \ nat \ float interval \ float interval"
is "\p n (l, u). float_power_bnds p n l u"
using float_power_bnds
by (auto simp: bnds_power dest!: float_power_bnds[OF sym])
lemma lower_power_float_interval:
"lower (power_float_interval p n x) = fst (float_power_bnds p n (lower x) (upper x))"
by transfer auto
lemma upper_power_float_interval:
"upper (power_float_interval p n x) = snd (float_power_bnds p n (lower x) (upper x))"
by transfer auto
lemma power_float_intervalI: "x \\<^sub>r X \ x ^ n \\<^sub>r power_float_interval p n X"
using float_power_bnds[OF prod.collapse]
by (auto simp: set_of_eq lower_power_float_interval upper_power_float_interval)
lemma power_float_interval_mono:
"set_of (power_float_interval prec n A)
\<subseteq> set_of (power_float_interval prec n B)"
if "set_of A \ set_of B"
proof -
define la where "la = real_of_float (lower A)"
define ua where "ua = real_of_float (upper A)"
define lb where "lb = real_of_float (lower B)"
define ub where "ub = real_of_float (upper B)"
have ineqs: "lb \ la" "la \ ua" "ua \ ub" "lb \ ub"
using that lower_le_upper[of A] lower_le_upper[of B]
by (auto simp: la_def ua_def lb_def ub_def set_of_eq)
show ?thesis
using ineqs
by (simp add: set_of_subset_iff float_power_bnds_def max_def
power_down_fl.rep_eq power_up_fl.rep_eq
lower_power_float_interval upper_power_float_interval
la_def[symmetric] ua_def[symmetric] lb_def[symmetric] ub_def[symmetric])
(auto intro!: power_down_mono power_up_mono intro: order_trans[where y=0])
qed
section \<open>Approximation utility functions\<close>
definition bnds_mult :: "nat \ float \ float \ float \ float \ float \ float" where
"bnds_mult prec a1 a2 b1 b2 =
(float_plus_down prec (nprt a1 * pprt b2)
(float_plus_down prec (nprt a2 * nprt b2)
(float_plus_down prec (pprt a1 * pprt b1) (pprt a2 * nprt b1))),
float_plus_up prec (pprt a2 * pprt b2)
(float_plus_up prec (pprt a1 * nprt b2)
(float_plus_up prec (nprt a2 * pprt b1) (nprt a1 * nprt b1))))"
lemma bnds_mult:
fixes prec :: nat and a1 aa2 b1 b2 :: float
assumes "(l, u) = bnds_mult prec a1 a2 b1 b2"
assumes "a \ {real_of_float a1..real_of_float a2}"
assumes "b \ {real_of_float b1..real_of_float b2}"
shows "a * b \ {real_of_float l..real_of_float u}"
proof -
from assms have "real_of_float l \ a * b"
by (intro order.trans[OF _ mult_ge_prts[of a1 a a2 b1 b b2]])
(auto simp: bnds_mult_def intro!: float_plus_down_le)
moreover from assms have "real_of_float u \ a * b"
by (intro order.trans[OF mult_le_prts[of a1 a a2 b1 b b2]])
(auto simp: bnds_mult_def intro!: float_plus_up_le)
ultimately show ?thesis by simp
qed
lift_definition mult_float_interval::"nat \ float interval \ float interval \ float interval"
is "\prec. \(a1, a2). \(b1, b2). bnds_mult prec a1 a2 b1 b2"
by (auto dest!: bnds_mult[OF sym])
lemma lower_mult_float_interval:
"lower (mult_float_interval p x y) = fst (bnds_mult p (lower x) (upper x) (lower y) (upper y))"
by transfer auto
lemma upper_mult_float_interval:
"upper (mult_float_interval p x y) = snd (bnds_mult p (lower x) (upper x) (lower y) (upper y))"
by transfer auto
lemma mult_float_interval:
"set_of (real_interval A) * set_of (real_interval B) \
set_of (real_interval (mult_float_interval prec A B))"
proof -
let ?bm = "bnds_mult prec (lower A) (upper A) (lower B) (upper B)"
show ?thesis
using bnds_mult[of "fst ?bm" "snd ?bm", simplified, OF refl]
by (auto simp: set_of_eq set_times_def upper_mult_float_interval lower_mult_float_interval)
qed
lemma mult_float_intervalI:
"x * y \\<^sub>r mult_float_interval prec A B"
if "x \\<^sub>i real_interval A" "y \\<^sub>i real_interval B"
using mult_float_interval[of A B] that
by (auto simp: )
lemma mult_float_interval_mono:
"set_of (mult_float_interval prec A B) \ set_of (mult_float_interval prec X Y)"
if "set_of A \ set_of X" "set_of B \ set_of Y"
using that
apply transfer
unfolding bnds_mult_def atLeastatMost_subset_iff float_plus_down.rep_eq float_plus_up.rep_eq
by (auto simp: float_plus_down.rep_eq float_plus_up.rep_eq mult_float_mono1 mult_float_mono2)
definition map_bnds :: "(nat \ float \ float) \ (nat \ float \ float) \
nat \<Rightarrow> (float \<times> float) \<Rightarrow> (float \<times> float)" where
"map_bnds lb ub prec = (\(l,u). (lb prec l, ub prec u))"
lemma map_bnds:
assumes "(lf, uf) = map_bnds lb ub prec (l, u)"
assumes "mono f"
assumes "x \ {real_of_float l..real_of_float u}"
assumes "real_of_float (lb prec l) \ f (real_of_float l)"
assumes "real_of_float (ub prec u) \ f (real_of_float u)"
shows "f x \ {real_of_float lf..real_of_float uf}"
proof -
from assms have "real_of_float lf = real_of_float (lb prec l)"
by (simp add: map_bnds_def)
also have "real_of_float (lb prec l) \ f (real_of_float l)" by fact
also from assms have "\ \ f x"
by (intro monoD[OF \<open>mono f\<close>]) auto
finally have lf: "real_of_float lf \ f x" .
from assms have "f x \ f (real_of_float u)"
by (intro monoD[OF \<open>mono f\<close>]) auto
also have "\ \ real_of_float (ub prec u)" by fact
also from assms have "\ = real_of_float uf"
by (simp add: map_bnds_def)
finally have uf: "f x \ real_of_float uf" .
from lf uf show ?thesis by simp
qed
section "Square root"
text \<open>
The square root computation is implemented as newton iteration. As first first step we use the
nearest power of two greater than the square root.
\<close>
fun sqrt_iteration :: "nat \ nat \ float \ float" where
"sqrt_iteration prec 0 x = Float 1 ((bitlen \mantissa x\ + exponent x) div 2 + 1)" |
"sqrt_iteration prec (Suc m) x = (let y = sqrt_iteration prec m x
in Float 1 (- 1) * float_plus_up prec y (float_divr prec x y))"
lemma compute_sqrt_iteration_base[code]:
shows "sqrt_iteration prec n (Float m e) =
(if n = 0 then Float 1 ((if m = 0 then 0 else bitlen \<bar>m\<bar> + e) div 2 + 1)
else (let y = sqrt_iteration prec (n - 1) (Float m e) in
Float 1 (- 1) * float_plus_up prec y (float_divr prec (Float m e) y)))"
using bitlen_Float by (cases n) simp_all
function ub_sqrt lb_sqrt :: "nat \ float \ float" where
"ub_sqrt prec x = (if 0 < x then (sqrt_iteration prec prec x)
else if x < 0 then - lb_sqrt prec (- x)
else 0)" |
"lb_sqrt prec x = (if 0 < x then (float_divl prec x (sqrt_iteration prec prec x))
else if x < 0 then - ub_sqrt prec (- x)
else 0)"
by pat_completeness auto
termination by (relation "measure (\ v. let (prec, x) = case_sum id id v in (if x < 0 then 1 else 0))", auto)
declare lb_sqrt.simps[simp del]
declare ub_sqrt.simps[simp del]
lemma sqrt_ub_pos_pos_1:
assumes "sqrt x < b" and "0 < b" and "0 < x"
shows "sqrt x < (b + x / b)/2"
proof -
from assms have "0 < (b - sqrt x)\<^sup>2 " by simp
also have "\ = b\<^sup>2 - 2 * b * sqrt x + (sqrt x)\<^sup>2" by algebra
also have "\ = b\<^sup>2 - 2 * b * sqrt x + x" using assms by simp
finally have "0 < b\<^sup>2 - 2 * b * sqrt x + x" .
hence "0 < b / 2 - sqrt x + x / (2 * b)" using assms
by (simp add: field_simps power2_eq_square)
thus ?thesis by (simp add: field_simps)
qed
lemma sqrt_iteration_bound:
assumes "0 < real_of_float x"
shows "sqrt x < sqrt_iteration prec n x"
proof (induct n)
case 0
show ?case
proof (cases x)
case (Float m e)
hence "0 < m"
using assms
by (auto simp: algebra_split_simps)
hence "0 < sqrt m" by auto
have int_nat_bl: "(nat (bitlen m)) = bitlen m"
using bitlen_nonneg by auto
have "x = (m / 2^nat (bitlen m)) * 2 powr (e + (nat (bitlen m)))"
unfolding Float by (auto simp: powr_realpow[symmetric] field_simps powr_add)
also have "\ < 1 * 2 powr (e + nat (bitlen m))"
proof (rule mult_strict_right_mono, auto)
show "m < 2^nat (bitlen m)"
using bitlen_bounds[OF \<open>0 < m\<close>, THEN conjunct2]
unfolding of_int_less_iff[of m, symmetric] by auto
qed
finally have "sqrt x < sqrt (2 powr (e + bitlen m))"
unfolding int_nat_bl by auto
also have "\ \ 2 powr ((e + bitlen m) div 2 + 1)"
proof -
let ?E = "e + bitlen m"
have E_mod_pow: "2 powr (?E mod 2) < 4"
proof (cases "?E mod 2 = 1")
case True
thus ?thesis by auto
next
case False
have "0 \ ?E mod 2" by auto
have "?E mod 2 < 2" by auto
from this[THEN zless_imp_add1_zle]
have "?E mod 2 \ 0" using False by auto
from xt1(5)[OF \<open>0 \<le> ?E mod 2\<close> this]
show ?thesis by auto
qed
hence "sqrt (2 powr (?E mod 2)) < sqrt (2 * 2)"
by (intro real_sqrt_less_mono) auto
hence E_mod_pow: "sqrt (2 powr (?E mod 2)) < 2" by auto
have E_eq: "2 powr ?E = 2 powr (?E div 2 + ?E div 2 + ?E mod 2)"
by auto
have "sqrt (2 powr ?E) = sqrt (2 powr (?E div 2) * 2 powr (?E div 2) * 2 powr (?E mod 2))"
unfolding E_eq unfolding powr_add[symmetric] by (metis of_int_add)
also have "\ = 2 powr (?E div 2) * sqrt (2 powr (?E mod 2))"
unfolding real_sqrt_mult[of _ "2 powr (?E mod 2)"] real_sqrt_abs2 by auto
also have "\ < 2 powr (?E div 2) * 2 powr 1"
by (rule mult_strict_left_mono) (auto intro: E_mod_pow)
also have "\ = 2 powr (?E div 2 + 1)"
unfolding add.commute[of _ 1] powr_add[symmetric] by simp
finally show ?thesis by auto
qed
finally show ?thesis using \<open>0 < m\<close>
unfolding Float
by (subst compute_sqrt_iteration_base) (simp add: ac_simps)
qed
next
case (Suc n)
let ?b = "sqrt_iteration prec n x"
have "0 < sqrt x"
using \<open>0 < real_of_float x\<close> by auto
also have "\ < real_of_float ?b"
using Suc .
finally have "sqrt x < (?b + x / ?b)/2"
using sqrt_ub_pos_pos_1[OF Suc _ \<open>0 < real_of_float x\<close>] by auto
also have "\ \ (?b + (float_divr prec x ?b))/2"
by (rule divide_right_mono, auto simp add: float_divr)
also have "\ = (Float 1 (- 1)) * (?b + (float_divr prec x ?b))"
by simp
also have "\ \ (Float 1 (- 1)) * (float_plus_up prec ?b (float_divr prec x ?b))"
by (auto simp add: algebra_simps float_plus_up_le)
finally show ?case
unfolding sqrt_iteration.simps Let_def distrib_left .
qed
lemma sqrt_iteration_lower_bound:
assumes "0 < real_of_float x"
shows "0 < real_of_float (sqrt_iteration prec n x)" (is "0 < ?sqrt")
proof -
have "0 < sqrt x" using assms by auto
also have "\ < ?sqrt" using sqrt_iteration_bound[OF assms] .
finally show ?thesis .
qed
lemma lb_sqrt_lower_bound:
assumes "0 \ real_of_float x"
shows "0 \ real_of_float (lb_sqrt prec x)"
proof (cases "0 < x")
case True
hence "0 < real_of_float x" and "0 \ x"
using \<open>0 \<le> real_of_float x\<close> by auto
hence "0 < sqrt_iteration prec prec x"
using sqrt_iteration_lower_bound by auto
hence "0 \ real_of_float (float_divl prec x (sqrt_iteration prec prec x))"
using float_divl_lower_bound[OF \<open>0 \<le> x\<close>] unfolding less_eq_float_def by auto
thus ?thesis
unfolding lb_sqrt.simps using True by auto
next
case False
with \<open>0 \<le> real_of_float x\<close> have "real_of_float x = 0" by auto
thus ?thesis
unfolding lb_sqrt.simps by auto
qed
lemma bnds_sqrt': "sqrt x \ {(lb_sqrt prec x) .. (ub_sqrt prec x)}"
proof -
have lb: "lb_sqrt prec x \ sqrt x" if "0 < x" for x :: float
proof -
from that have "0 < real_of_float x" and "0 \ real_of_float x" by auto
hence sqrt_gt0: "0 < sqrt x" by auto
hence sqrt_ub: "sqrt x < sqrt_iteration prec prec x"
using sqrt_iteration_bound by auto
have "(float_divl prec x (sqrt_iteration prec prec x)) \
x / (sqrt_iteration prec prec x)" by (rule float_divl)
also have "\ < x / sqrt x"
by (rule divide_strict_left_mono[OF sqrt_ub \<open>0 < real_of_float x\<close>
mult_pos_pos[OF order_less_trans[OF sqrt_gt0 sqrt_ub] sqrt_gt0]])
also have "\ = sqrt x"
unfolding inverse_eq_iff_eq[of _ "sqrt x", symmetric]
sqrt_divide_self_eq[OF \<open>0 \<le> real_of_float x\<close>, symmetric] by auto
finally show ?thesis
unfolding lb_sqrt.simps if_P[OF \<open>0 < x\<close>] by auto
qed
have ub: "sqrt x \ ub_sqrt prec x" if "0 < x" for x :: float
proof -
from that have "0 < real_of_float x" by auto
hence "0 < sqrt x" by auto
hence "sqrt x < sqrt_iteration prec prec x"
using sqrt_iteration_bound by auto
then show ?thesis
unfolding ub_sqrt.simps if_P[OF \<open>0 < x\<close>] by auto
qed
show ?thesis
using lb[of "-x"] ub[of "-x"] lb[of x] ub[of x]
by (auto simp add: lb_sqrt.simps ub_sqrt.simps real_sqrt_minus)
qed
lemma bnds_sqrt: "\(x::real) lx ux.
(l, u) = (lb_sqrt prec lx, ub_sqrt prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> sqrt x \<and> sqrt x \<le> u"
proof ((rule allI) +, rule impI, erule conjE, rule conjI)
fix x :: real
fix lx ux
assume "(l, u) = (lb_sqrt prec lx, ub_sqrt prec ux)"
and x: "x \ {lx .. ux}"
hence l: "l = lb_sqrt prec lx " and u: "u = ub_sqrt prec ux" by auto
have "sqrt lx \ sqrt x" using x by auto
from order_trans[OF _ this]
show "l \ sqrt x" unfolding l using bnds_sqrt'[of lx prec] by auto
have "sqrt x \ sqrt ux" using x by auto
from order_trans[OF this]
show "sqrt x \ u" unfolding u using bnds_sqrt'[of ux prec] by auto
qed
lift_definition sqrt_float_interval::"nat \ float interval \ float interval"
is "\prec. \(lx, ux). (lb_sqrt prec lx, ub_sqrt prec ux)"
using bnds_sqrt'
by auto (meson order_trans real_sqrt_le_iff)
lemma lower_float_interval: "lower (sqrt_float_interval prec X) = lb_sqrt prec (lower X)"
by transfer auto
lemma upper_float_interval: "upper (sqrt_float_interval prec X) = ub_sqrt prec (upper X)"
by transfer auto
lemma sqrt_float_interval:
"sqrt ` set_of (real_interval X) \ set_of (real_interval (sqrt_float_interval prec X))"
using bnds_sqrt
by (auto simp: set_of_eq lower_float_interval upper_float_interval)
lemma sqrt_float_intervalI: "sqrt x \\<^sub>r sqrt_float_interval p X" if "x \\<^sub>r X"
using sqrt_float_interval[of X p] that
by auto
section "Arcus tangens and \"
subsection "Compute arcus tangens series"
text \<open>
As first step we implement the computation of the arcus tangens series. This is only valid in the range
\<^term>\<open>{-1 :: real .. 1}\<close>. This is used to compute \<pi> and then the entire arcus tangens.
\<close>
fun ub_arctan_horner :: "nat \ nat \ nat \ float \ float"
and lb_arctan_horner :: "nat \ nat \ nat \ float \ float" where
"ub_arctan_horner prec 0 k x = 0"
| "ub_arctan_horner prec (Suc n) k x = float_plus_up prec
(rapprox_rat prec 1 k) (- float_round_down prec (x * (lb_arctan_horner prec n (k + 2) x)))"
| "lb_arctan_horner prec 0 k x = 0"
| "lb_arctan_horner prec (Suc n) k x = float_plus_down prec
(lapprox_rat prec 1 k) (- float_round_up prec (x * (ub_arctan_horner prec n (k + 2) x)))"
lemma arctan_0_1_bounds':
assumes "0 \ real_of_float y" "real_of_float y \ 1"
and "even n"
shows "arctan (sqrt y) \
{(sqrt y * lb_arctan_horner prec n 1 y) .. (sqrt y * ub_arctan_horner prec (Suc n) 1 y)}"
proof -
let ?c = "\i. (- 1) ^ i * (1 / (i * 2 + (1::nat)) * sqrt y ^ (i * 2 + 1))"
let ?S = "\n. \ i=0..
have "0 \ sqrt y" using assms by auto
have "sqrt y \ 1" using assms by auto
from \<open>even n\<close> obtain m where "2 * m = n" by (blast elim: evenE)
have "arctan (sqrt y) \ { ?S n .. ?S (Suc n) }"
proof (cases "sqrt y = 0")
case True
then show ?thesis by simp
next
case False
hence "0 < sqrt y" using \<open>0 \<le> sqrt y\<close> by auto
hence prem: "0 < 1 / (0 * 2 + (1::nat)) * sqrt y ^ (0 * 2 + 1)" by auto
have "\ sqrt y \ \ 1" using \0 \ sqrt y\ \sqrt y \ 1\ by auto
from mp[OF summable_Leibniz(2)[OF zeroseq_arctan_series[OF this]
monoseq_arctan_series[OF this]] prem, THEN spec, of m, unfolded \<open>2 * m = n\<close>]
show ?thesis unfolding arctan_series[OF \<open>\<bar> sqrt y \<bar> \<le> 1\<close>] Suc_eq_plus1 atLeast0LessThan .
qed
note arctan_bounds = this[unfolded atLeastAtMost_iff]
have F: "\n. 2 * Suc n + 1 = 2 * n + 1 + 2" by auto
note bounds = horner_bounds[where s=1 and f="\i. 2 * i + 1" and j'=0
and lb="\n i k x. lb_arctan_horner prec n k x"
and ub="\n i k x. ub_arctan_horner prec n k x",
OF \<open>0 \<le> real_of_float y\<close> F lb_arctan_horner.simps ub_arctan_horner.simps]
have "(sqrt y * lb_arctan_horner prec n 1 y) \ arctan (sqrt y)"
proof -
have "(sqrt y * lb_arctan_horner prec n 1 y) \ ?S n"
using bounds(1) \<open>0 \<le> sqrt y\<close>
apply (simp only: power_add power_one_right mult.assoc[symmetric] sum_distrib_right[symmetric])
apply (simp only: mult.commute[where 'a=real] mult.commute[of _ "2::nat"] power_mult)
apply (auto intro!: mult_left_mono)
done
also have "\ \ arctan (sqrt y)" using arctan_bounds ..
finally show ?thesis .
qed
moreover
have "arctan (sqrt y) \ (sqrt y * ub_arctan_horner prec (Suc n) 1 y)"
proof -
have "arctan (sqrt y) \ ?S (Suc n)" using arctan_bounds ..
also have "\ \ (sqrt y * ub_arctan_horner prec (Suc n) 1 y)"
using bounds(2)[of "Suc n"] \<open>0 \<le> sqrt y\<close>
apply (simp only: power_add power_one_right mult.assoc[symmetric] sum_distrib_right[symmetric])
apply (simp only: mult.commute[where 'a=real] mult.commute[of _ "2::nat"] power_mult)
apply (auto intro!: mult_left_mono)
done
finally show ?thesis .
qed
ultimately show ?thesis by auto
qed
lemma arctan_0_1_bounds:
assumes "0 \ real_of_float y" "real_of_float y \ 1"
shows "arctan (sqrt y) \
{(sqrt y * lb_arctan_horner prec (get_even n) 1 y) ..
(sqrt y * ub_arctan_horner prec (get_odd n) 1 y)}"
using
arctan_0_1_bounds'[OF assms, of n prec]
arctan_0_1_bounds'[OF assms, of "n + 1" prec]
arctan_0_1_bounds'[OF assms, of "n - 1" prec]
by (auto simp: get_even_def get_odd_def odd_pos
simp del: ub_arctan_horner.simps lb_arctan_horner.simps)
lemma arctan_lower_bound:
assumes "0 \ x"
shows "x / (1 + x\<^sup>2) \ arctan x" (is "?l x \ _")
proof -
have "?l x - arctan x \ ?l 0 - arctan 0"
using assms
by (intro DERIV_nonpos_imp_nonincreasing[where f="\x. ?l x - arctan x"])
(auto intro!: derivative_eq_intros simp: add_nonneg_eq_0_iff field_simps)
thus ?thesis by simp
qed
lemma arctan_divide_mono: "0 < x \ x \ y \ arctan y / y \ arctan x / x"
by (rule DERIV_nonpos_imp_nonincreasing[where f="\x. arctan x / x"])
(auto intro!: derivative_eq_intros divide_nonpos_nonneg
simp: inverse_eq_divide arctan_lower_bound)
lemma arctan_mult_mono: "0 \ x \ x \ y \ x * arctan y \ y * arctan x"
using arctan_divide_mono[of x y] by (cases "x = 0") (simp_all add: field_simps)
lemma arctan_mult_le:
assumes "0 \ x" "x \ y" "y * z \ arctan y"
shows "x * z \ arctan x"
proof (cases "x = 0")
case True
then show ?thesis by simp
next
case False
with assms have "z \ arctan y / y" by (simp add: field_simps)
also have "\ \ arctan x / x" using assms \x \ 0\ by (auto intro!: arctan_divide_mono)
finally show ?thesis using assms \<open>x \<noteq> 0\<close> by (simp add: field_simps)
qed
lemma arctan_le_mult:
assumes "0 < x" "x \ y" "arctan x \ x * z"
shows "arctan y \ y * z"
proof -
from assms have "arctan y / y \ arctan x / x" by (auto intro!: arctan_divide_mono)
also have "\ \ z" using assms by (auto simp: field_simps)
finally show ?thesis using assms by (simp add: field_simps)
qed
lemma arctan_0_1_bounds_le:
assumes "0 \ x" "x \ 1" "0 < real_of_float xl" "real_of_float xl \ x * x" "x * x \ real_of_float xu" "real_of_float xu \ 1"
shows "arctan x \
{x * lb_arctan_horner p1 (get_even n) 1 xu .. x * ub_arctan_horner p2 (get_odd n) 1 xl}"
proof -
from assms have "real_of_float xl \ 1" "sqrt (real_of_float xl) \ x" "x \ sqrt (real_of_float xu)" "0 \ real_of_float xu"
"0 \ real_of_float xl" "0 < sqrt (real_of_float xl)"
by (auto intro!: real_le_rsqrt real_le_lsqrt simp: power2_eq_square)
from arctan_0_1_bounds[OF \<open>0 \<le> real_of_float xu\<close> \<open>real_of_float xu \<le> 1\<close>]
have "sqrt (real_of_float xu) * real_of_float (lb_arctan_horner p1 (get_even n) 1 xu) \ arctan (sqrt (real_of_float xu))"
by simp
from arctan_mult_le[OF \<open>0 \<le> x\<close> \<open>x \<le> sqrt _\<close> this]
have "x * real_of_float (lb_arctan_horner p1 (get_even n) 1 xu) \ arctan x" .
moreover
from arctan_0_1_bounds[OF \<open>0 \<le> real_of_float xl\<close> \<open>real_of_float xl \<le> 1\<close>]
have "arctan (sqrt (real_of_float xl)) \ sqrt (real_of_float xl) * real_of_float (ub_arctan_horner p2 (get_odd n) 1 xl)"
by simp
from arctan_le_mult[OF \<open>0 < sqrt xl\<close> \<open>sqrt xl \<le> x\<close> this]
have "arctan x \ x * real_of_float (ub_arctan_horner p2 (get_odd n) 1 xl)" .
ultimately show ?thesis by simp
qed
lemma arctan_0_1_bounds_round:
assumes "0 \ real_of_float x" "real_of_float x \ 1"
shows "arctan x \
{real_of_float x * lb_arctan_horner p1 (get_even n) 1 (float_round_up (Suc p2) (x * x)) ..
real_of_float x * ub_arctan_horner p3 (get_odd n) 1 (float_round_down (Suc p4) (x * x))}"
using assms
apply (cases "x > 0")
apply (intro arctan_0_1_bounds_le)
apply (auto simp: float_round_down.rep_eq float_round_up.rep_eq
intro!: truncate_up_le1 mult_le_one truncate_down_le truncate_up_le truncate_down_pos
mult_pos_pos)
done
subsection "Compute \"
definition ub_pi :: "nat \ float" where
"ub_pi prec =
(let
A = rapprox_rat prec 1 5 ;
B = lapprox_rat prec 1 239
in ((Float 1 2) * float_plus_up prec
((Float 1 2) * float_round_up prec (A * (ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1
(float_round_down (Suc prec) (A * A)))))
(- float_round_down prec (B * (lb_arctan_horner prec (get_even (prec div 14 + 1)) 1
(float_round_up (Suc prec) (B * B)))))))"
definition lb_pi :: "nat \ float" where
"lb_pi prec =
(let
A = lapprox_rat prec 1 5 ;
B = rapprox_rat prec 1 239
in ((Float 1 2) * float_plus_down prec
((Float 1 2) * float_round_down prec (A * (lb_arctan_horner prec (get_even (prec div 4 + 1)) 1
(float_round_up (Suc prec) (A * A)))))
(- float_round_up prec (B * (ub_arctan_horner prec (get_odd (prec div 14 + 1)) 1
(float_round_down (Suc prec) (B * B)))))))"
lemma pi_boundaries: "pi \ {(lb_pi n) .. (ub_pi n)}"
proof -
have machin_pi: "pi = 4 * (4 * arctan (1 / 5) - arctan (1 / 239))"
unfolding machin[symmetric] by auto
{
fix prec n :: nat
fix k :: int
assume "1 < k" hence "0 \ k" and "0 < k" and "1 \ k" by auto
let ?k = "rapprox_rat prec 1 k"
let ?kl = "float_round_down (Suc prec) (?k * ?k)"
have "1 div k = 0" using div_pos_pos_trivial[OF _ \<open>1 < k\<close>] by auto
have "0 \ real_of_float ?k" by (rule order_trans[OF _ rapprox_rat]) (auto simp add: \0 \ k\)
have "real_of_float ?k \ 1"
by (auto simp add: \<open>0 < k\<close> \<open>1 \<le> k\<close> less_imp_le
intro!: mult_le_one order_trans[OF _ rapprox_rat] rapprox_rat_le1)
have "1 / k \ ?k" using rapprox_rat[where x=1 and y=k] by auto
hence "arctan (1 / k) \ arctan ?k" by (rule arctan_monotone')
also have "\ \ (?k * ub_arctan_horner prec (get_odd n) 1 ?kl)"
using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?k\<close> \<open>real_of_float ?k \<le> 1\<close>]
by auto
finally have "arctan (1 / k) \ ?k * ub_arctan_horner prec (get_odd n) 1 ?kl" .
} note ub_arctan = this
{
fix prec n :: nat
fix k :: int
assume "1 < k" hence "0 \ k" and "0 < k" by auto
let ?k = "lapprox_rat prec 1 k"
let ?ku = "float_round_up (Suc prec) (?k * ?k)"
have "1 div k = 0" using div_pos_pos_trivial[OF _ \<open>1 < k\<close>] by auto
have "1 / k \ 1" using \1 < k\ by auto
have "0 \ real_of_float ?k" using lapprox_rat_nonneg[where x=1 and y=k, OF zero_le_one \0 \ k\]
by (auto simp add: \<open>1 div k = 0\<close>)
have "0 \ real_of_float (?k * ?k)" by simp
have "real_of_float ?k \ 1" using lapprox_rat by (rule order_trans, auto simp add: \1 / k \ 1\)
hence "real_of_float (?k * ?k) \ 1" using \0 \ real_of_float ?k\ by (auto intro!: mult_le_one)
have "?k \ 1 / k" using lapprox_rat[where x=1 and y=k] by auto
have "?k * lb_arctan_horner prec (get_even n) 1 ?ku \ arctan ?k"
using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?k\<close> \<open>real_of_float ?k \<le> 1\<close>]
by auto
also have "\ \ arctan (1 / k)" using \?k \ 1 / k\ by (rule arctan_monotone')
finally have "?k * lb_arctan_horner prec (get_even n) 1 ?ku \ arctan (1 / k)" .
} note lb_arctan = this
have "pi \ ub_pi n "
unfolding ub_pi_def machin_pi Let_def times_float.rep_eq Float_num
using lb_arctan[of 239] ub_arctan[of 5] powr_realpow[of 2 2]
by (intro mult_left_mono float_plus_up_le float_plus_down_le)
(auto intro!: mult_left_mono float_round_down_le float_round_up_le diff_mono)
moreover have "lb_pi n \ pi"
unfolding lb_pi_def machin_pi Let_def times_float.rep_eq Float_num
using lb_arctan[of 5] ub_arctan[of 239]
by (intro mult_left_mono float_plus_up_le float_plus_down_le)
(auto intro!: mult_left_mono float_round_down_le float_round_up_le diff_mono)
ultimately show ?thesis by auto
qed
lift_definition pi_float_interval::"nat \ float interval" is "\prec. (lb_pi prec, ub_pi prec)"
using pi_boundaries
by (auto intro: order_trans)
lemma lower_pi_float_interval: "lower (pi_float_interval prec) = lb_pi prec"
by transfer auto
lemma upper_pi_float_interval: "upper (pi_float_interval prec) = ub_pi prec"
by transfer auto
lemma pi_float_interval: "pi \ set_of (real_interval (pi_float_interval prec))"
using pi_boundaries
by (auto simp: set_of_eq lower_pi_float_interval upper_pi_float_interval)
subsection "Compute arcus tangens in the entire domain"
function lb_arctan :: "nat \ float \ float" and ub_arctan :: "nat \ float \ float" where
"lb_arctan prec x =
(let
ub_horner = \<lambda> x. float_round_up prec
(x *
ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x)));
lb_horner = \<lambda> x. float_round_down prec
(x *
lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x)))
in
if x < 0 then - ub_arctan prec (-x)
else if x \<le> Float 1 (- 1) then lb_horner x
else if x \<le> Float 1 1 then
Float 1 1 *
lb_horner
(float_divl prec x
(float_plus_up prec 1
(ub_sqrt prec (float_plus_up prec 1 (float_round_up prec (x * x))))))
else let inv = float_divr prec 1 x in
if inv > 1 then 0
else float_plus_down prec (lb_pi prec * Float 1 (- 1)) ( - ub_horner inv))"
| "ub_arctan prec x =
(let
lb_horner = \<lambda> x. float_round_down prec
(x *
lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x))) ;
ub_horner = \<lambda> x. float_round_up prec
(x *
ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x)))
in if x < 0 then - lb_arctan prec (-x)
else if x \<le> Float 1 (- 1) then ub_horner x
else if x \<le> Float 1 1 then
let y = float_divr prec x
(float_plus_down
(Suc prec) 1 (lb_sqrt prec (float_plus_down prec 1 (float_round_down prec (x * x)))))
in if y > 1 then ub_pi prec * Float 1 (- 1) else Float 1 1 * ub_horner y
else float_plus_up prec (ub_pi prec * Float 1 (- 1)) ( - lb_horner (float_divl prec 1 x)))"
by pat_completeness auto
termination
by (relation "measure (\ v. let (prec, x) = case_sum id id v in (if x < 0 then 1 else 0))", auto)
declare ub_arctan_horner.simps[simp del]
declare lb_arctan_horner.simps[simp del]
lemma lb_arctan_bound':
assumes "0 \ real_of_float x"
shows "lb_arctan prec x \ arctan x"
proof -
have "\ x < 0" and "0 \ x"
using \<open>0 \<le> real_of_float x\<close> by (auto intro!: truncate_up_le )
let "?ub_horner x" =
"x * ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x))"
and "?lb_horner x" =
"x * lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x))"
show ?thesis
proof (cases "x \ Float 1 (- 1)")
case True
hence "real_of_float x \ 1" by simp
from arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float x\<close> \<open>real_of_float x \<le> 1\<close>]
show ?thesis
unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>] if_P[OF True] using \<open>0 \<le> x\<close>
by (auto intro!: float_round_down_le)
next
case False
hence "0 < real_of_float x" by auto
let ?R = "1 + sqrt (1 + real_of_float x * real_of_float x)"
let ?sxx = "float_plus_up prec 1 (float_round_up prec (x * x))"
let ?fR = "float_plus_up prec 1 (ub_sqrt prec ?sxx)"
let ?DIV = "float_divl prec x ?fR"
have divisor_gt0: "0 < ?R" by (auto intro: add_pos_nonneg)
have "sqrt (1 + x*x) \ sqrt ?sxx"
by (auto simp: float_plus_up.rep_eq plus_up_def float_round_up.rep_eq intro!: truncate_up_le)
also have "\ \ ub_sqrt prec ?sxx"
using bnds_sqrt'[of ?sxx prec] by auto
finally
have "sqrt (1 + x*x) \ ub_sqrt prec ?sxx" .
hence "?R \ ?fR" by (auto simp: float_plus_up.rep_eq plus_up_def intro!: truncate_up_le)
hence "0 < ?fR" and "0 < real_of_float ?fR" using \<open>0 < ?R\<close> by auto
have monotone: "?DIV \ x / ?R"
proof -
have "?DIV \ real_of_float x / ?fR" by (rule float_divl)
also have "\ \ x / ?R" by (rule divide_left_mono[OF \?R \ ?fR\ \0 \ real_of_float x\ mult_pos_pos[OF order_less_le_trans[OF divisor_gt0 \?R \ real_of_float ?fR\] divisor_gt0]])
finally show ?thesis .
qed
show ?thesis
proof (cases "x \ Float 1 1")
case True
have "x \ sqrt (1 + x * x)"
using real_sqrt_sum_squares_ge2[where x=1, unfolded numeral_2_eq_2] by auto
also note \<open>\<dots> \<le> (ub_sqrt prec ?sxx)\<close>
finally have "real_of_float x \ ?fR"
by (auto simp: float_plus_up.rep_eq plus_up_def intro!: truncate_up_le)
moreover have "?DIV \ real_of_float x / ?fR"
by (rule float_divl)
ultimately have "real_of_float ?DIV \ 1"
unfolding divide_le_eq_1_pos[OF \<open>0 < real_of_float ?fR\<close>, symmetric] by auto
have "0 \ real_of_float ?DIV"
using float_divl_lower_bound[OF \<open>0 \<le> x\<close>] \<open>0 < ?fR\<close>
unfolding less_eq_float_def by auto
from arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float (?DIV)\<close> \<open>real_of_float (?DIV) \<le> 1\<close>]
have "Float 1 1 * ?lb_horner ?DIV \ 2 * arctan ?DIV"
by simp
also have "\ \ 2 * arctan (x / ?R)"
using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono arctan_monotone')
also have "2 * arctan (x / ?R) = arctan x"
using arctan_half[symmetric] unfolding numeral_2_eq_2 power_Suc2 power_0 mult_1_left .
finally show ?thesis
unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_P[OF True]
by (auto simp: float_round_down.rep_eq
intro!: order_trans[OF mult_left_mono[OF truncate_down]])
next
case False
hence "2 < real_of_float x" by auto
hence "1 \ real_of_float x" by auto
let "?invx" = "float_divr prec 1 x"
have "0 \ arctan x" using arctan_monotone'[OF \0 \ real_of_float x\]
using arctan_tan[of 0, unfolded tan_zero] by auto
show ?thesis
proof (cases "1 < ?invx")
case True
show ?thesis
unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_not_P[OF False] if_P[OF True]
using \<open>0 \<le> arctan x\<close> by auto
next
case False
hence "real_of_float ?invx \ 1" by auto
have "0 \ real_of_float ?invx"
by (rule order_trans[OF _ float_divr]) (auto simp add: \<open>0 \<le> real_of_float x\<close>)
have "1 / x \ 0" and "0 < 1 / x"
using \<open>0 < real_of_float x\<close> by auto
have "arctan (1 / x) \ arctan ?invx"
unfolding one_float.rep_eq[symmetric] by (rule arctan_monotone', rule float_divr)
also have "\ \ ?ub_horner ?invx"
using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?invx\<close> \<open>real_of_float ?invx \<le> 1\<close>]
by (auto intro!: float_round_up_le)
also note float_round_up
finally have "pi / 2 - float_round_up prec (?ub_horner ?invx) \ arctan x"
using \<open>0 \<le> arctan x\<close> arctan_inverse[OF \<open>1 / x \<noteq> 0\<close>]
unfolding sgn_pos[OF \<open>0 < 1 / real_of_float x\<close>] le_diff_eq by auto
moreover
have "lb_pi prec * Float 1 (- 1) \ pi / 2"
unfolding Float_num times_divide_eq_right mult_1_left using pi_boundaries by simp
ultimately
show ?thesis
unfolding lb_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_not_P[OF \<open>\<not> x \<le> Float 1 1\<close>] if_not_P[OF False]
by (auto intro!: float_plus_down_le)
qed
qed
qed
qed
lemma ub_arctan_bound':
assumes "0 \ real_of_float x"
shows "arctan x \ ub_arctan prec x"
proof -
have "\ x < 0" and "0 \ x"
using \<open>0 \<le> real_of_float x\<close> by auto
let "?ub_horner x" =
"float_round_up prec (x * ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x)))"
let "?lb_horner x" =
"float_round_down prec (x * lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x)))"
show ?thesis
proof (cases "x \ Float 1 (- 1)")
case True
hence "real_of_float x \ 1" by auto
show ?thesis
unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>] if_P[OF True]
using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float x\<close> \<open>real_of_float x \<le> 1\<close>]
by (auto intro!: float_round_up_le)
next
case False
hence "0 < real_of_float x" by auto
let ?R = "1 + sqrt (1 + real_of_float x * real_of_float x)"
let ?sxx = "float_plus_down prec 1 (float_round_down prec (x * x))"
let ?fR = "float_plus_down (Suc prec) 1 (lb_sqrt prec ?sxx)"
let ?DIV = "float_divr prec x ?fR"
have sqr_ge0: "0 \ 1 + real_of_float x * real_of_float x"
using sum_power2_ge_zero[of 1 "real_of_float x", unfolded numeral_2_eq_2] by auto
hence "0 \ real_of_float (1 + x*x)" by auto
hence divisor_gt0: "0 < ?R" by (auto intro: add_pos_nonneg)
have "lb_sqrt prec ?sxx \ sqrt ?sxx"
using bnds_sqrt'[of ?sxx] by auto
also have "\ \ sqrt (1 + x*x)"
by (auto simp: float_plus_down.rep_eq plus_down_def float_round_down.rep_eq truncate_down_le)
finally have "lb_sqrt prec ?sxx \ sqrt (1 + x*x)" .
hence "?fR \ ?R"
by (auto simp: float_plus_down.rep_eq plus_down_def truncate_down_le)
have "0 < real_of_float ?fR"
by (auto simp: float_plus_down.rep_eq plus_down_def float_round_down.rep_eq
intro!: truncate_down_ge1 lb_sqrt_lower_bound order_less_le_trans[OF zero_less_one]
truncate_down_nonneg add_nonneg_nonneg)
have monotone: "x / ?R \ (float_divr prec x ?fR)"
proof -
from divide_left_mono[OF \<open>?fR \<le> ?R\<close> \<open>0 \<le> real_of_float x\<close> mult_pos_pos[OF divisor_gt0 \<open>0 < real_of_float ?fR\<close>]]
have "x / ?R \ x / ?fR" .
also have "\ \ ?DIV" by (rule float_divr)
finally show ?thesis .
qed
show ?thesis
proof (cases "x \ Float 1 1")
case True
show ?thesis
proof (cases "?DIV > 1")
case True
have "pi / 2 \ ub_pi prec * Float 1 (- 1)"
unfolding Float_num times_divide_eq_right mult_1_left using pi_boundaries by auto
from order_less_le_trans[OF arctan_ubound this, THEN less_imp_le]
show ?thesis
unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_P[OF \<open>x \<le> Float 1 1\<close>] if_P[OF True] .
next
case False
hence "real_of_float ?DIV \ 1" by auto
have "0 \ x / ?R"
using \<open>0 \<le> real_of_float x\<close> \<open>0 < ?R\<close> unfolding zero_le_divide_iff by auto
hence "0 \ real_of_float ?DIV"
using monotone by (rule order_trans)
have "arctan x = 2 * arctan (x / ?R)"
using arctan_half unfolding numeral_2_eq_2 power_Suc2 power_0 mult_1_left .
also have "\ \ 2 * arctan (?DIV)"
using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono)
also have "\ \ (Float 1 1 * ?ub_horner ?DIV)" unfolding Float_num
using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?DIV\<close> \<open>real_of_float ?DIV \<le> 1\<close>]
by (auto intro!: float_round_up_le)
finally show ?thesis
unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_P[OF \<open>x \<le> Float 1 1\<close>] if_not_P[OF False] .
qed
next
case False
hence "2 < real_of_float x" by auto
hence "1 \ real_of_float x" by auto
hence "0 < real_of_float x" by auto
hence "0 < x" by auto
let "?invx" = "float_divl prec 1 x"
have "0 \ arctan x"
using arctan_monotone'[OF \0 \ real_of_float x\] and arctan_tan[of 0, unfolded tan_zero] by auto
have "real_of_float ?invx \ 1"
unfolding less_float_def
by (rule order_trans[OF float_divl])
(auto simp add: \<open>1 \<le> real_of_float x\<close> divide_le_eq_1_pos[OF \<open>0 < real_of_float x\<close>])
have "0 \ real_of_float ?invx"
using \<open>0 < x\<close> by (intro float_divl_lower_bound) auto
have "1 / x \ 0" and "0 < 1 / x"
using \<open>0 < real_of_float x\<close> by auto
have "(?lb_horner ?invx) \ arctan (?invx)"
using arctan_0_1_bounds_round[OF \<open>0 \<le> real_of_float ?invx\<close> \<open>real_of_float ?invx \<le> 1\<close>]
by (auto intro!: float_round_down_le)
also have "\ \ arctan (1 / x)"
unfolding one_float.rep_eq[symmetric] by (rule arctan_monotone') (rule float_divl)
finally have "arctan x \ pi / 2 - (?lb_horner ?invx)"
using \<open>0 \<le> arctan x\<close> arctan_inverse[OF \<open>1 / x \<noteq> 0\<close>]
unfolding sgn_pos[OF \<open>0 < 1 / x\<close>] le_diff_eq by auto
moreover
have "pi / 2 \ ub_pi prec * Float 1 (- 1)"
unfolding Float_num times_divide_eq_right mult_1_right
using pi_boundaries by auto
ultimately
show ?thesis
unfolding ub_arctan.simps Let_def if_not_P[OF \<open>\<not> x < 0\<close>]
if_not_P[OF \<open>\<not> x \<le> Float 1 (- 1)\<close>] if_not_P[OF False]
by (auto intro!: float_round_up_le float_plus_up_le)
qed
qed
qed
lemma arctan_boundaries: "arctan x \ {(lb_arctan prec x) .. (ub_arctan prec x)}"
proof (cases "0 \ x")
case True
hence "0 \ real_of_float x" by auto
show ?thesis
using ub_arctan_bound'[OF \0 \ real_of_float x\] lb_arctan_bound'[OF \0 \ real_of_float x\]
unfolding atLeastAtMost_iff by auto
next
case False
let ?mx = "-x"
from False have "x < 0" and "0 \ real_of_float ?mx"
by auto
hence bounds: "lb_arctan prec ?mx \ arctan ?mx \ arctan ?mx \ ub_arctan prec ?mx"
using ub_arctan_bound'[OF \0 \ real_of_float ?mx\] lb_arctan_bound'[OF \0 \ real_of_float ?mx\] by auto
show ?thesis
unfolding minus_float.rep_eq arctan_minus lb_arctan.simps[where x=x]
ub_arctan.simps[where x=x] Let_def if_P[OF \<open>x < 0\<close>]
unfolding atLeastAtMost_iff using bounds[unfolded minus_float.rep_eq arctan_minus]
by (simp add: arctan_minus)
qed
lemma bnds_arctan: "\ (x::real) lx ux. (l, u) = (lb_arctan prec lx, ub_arctan prec ux) \ x \ {lx .. ux} \ l \ arctan x \ arctan x \ u"
proof (rule allI, rule allI, rule allI, rule impI)
fix x :: real
fix lx ux
assume "(l, u) = (lb_arctan prec lx, ub_arctan prec ux) \ x \ {lx .. ux}"
hence l: "lb_arctan prec lx = l "
and u: "ub_arctan prec ux = u"
and x: "x \ {lx .. ux}"
by auto
show "l \ arctan x \ arctan x \ u"
proof
show "l \ arctan x"
proof -
from arctan_boundaries[of lx prec, unfolded l]
have "l \ arctan lx" by (auto simp del: lb_arctan.simps)
also have "\ \ arctan x" using x by (auto intro: arctan_monotone')
finally show ?thesis .
qed
show "arctan x \ u"
proof -
have "arctan x \ arctan ux" using x by (auto intro: arctan_monotone')
also have "\ \ u" using arctan_boundaries[of ux prec, unfolded u] by (auto simp del: ub_arctan.simps)
finally show ?thesis .
qed
qed
qed
lemmas [simp del] = lb_arctan.simps ub_arctan.simps
lemma lb_arctan: "arctan (real_of_float x) \ y \ real_of_float (lb_arctan prec x) \ y"
and ub_arctan: "y \ arctan x \ y \ ub_arctan prec x"
for x::float and y::real
using arctan_boundaries[of x prec] by auto
lift_definition arctan_float_interval :: "nat \ float interval \ float interval"
is "\prec. \(lx, ux). (lb_arctan prec lx, ub_arctan prec ux)"
by (auto intro!: lb_arctan ub_arctan arctan_monotone')
lemma lower_arctan_float_interval: "lower (arctan_float_interval p x) = lb_arctan p (lower x)"
by transfer auto
lemma upper_arctan_float_interval: "upper (arctan_float_interval p x) = ub_arctan p (upper x)"
by transfer auto
lemma arctan_float_interval:
"arctan ` set_of (real_interval x) \ set_of (real_interval (arctan_float_interval p x))"
by (auto simp: set_of_eq lower_arctan_float_interval upper_arctan_float_interval
intro!: lb_arctan ub_arctan arctan_monotone')
lemma arctan_float_intervalI:
"arctan x \\<^sub>r arctan_float_interval p X" if "x \\<^sub>r X"
using arctan_float_interval[of X p] that
by auto
section "Sinus and Cosinus"
subsection "Compute the cosinus and sinus series"
fun ub_sin_cos_aux :: "nat \ nat \ nat \ nat \ float \ float"
and lb_sin_cos_aux :: "nat \ nat \ nat \ nat \ float \ float" where
"ub_sin_cos_aux prec 0 i k x = 0"
| "ub_sin_cos_aux prec (Suc n) i k x = float_plus_up prec
(rapprox_rat prec 1 k) (-
float_round_down prec (x * (lb_sin_cos_aux prec n (i + 2) (k * i * (i + 1)) x)))"
| "lb_sin_cos_aux prec 0 i k x = 0"
| "lb_sin_cos_aux prec (Suc n) i k x = float_plus_down prec
(lapprox_rat prec 1 k) (-
float_round_up prec (x * (ub_sin_cos_aux prec n (i + 2) (k * i * (i + 1)) x)))"
lemma cos_aux:
shows "(lb_sin_cos_aux prec n 1 1 (x * x)) \ (\ i=0..
and "(\ i=0.. (ub_sin_cos_aux prec n 1 1 (x * x))" (is "?ub")
proof -
have "0 \ real_of_float (x * x)" by auto
let "?f n" = "fact (2 * n) :: nat"
have f_eq: "?f (Suc n) = ?f n * ((\i. i + 2) ^^ n) 1 * (((\i. i + 2) ^^ n) 1 + 1)" for n
proof -
have "\m. ((\i. i + 2) ^^ n) m = m + 2 * n" by (induct n) auto
then show ?thesis by auto
qed
from horner_bounds[where lb="lb_sin_cos_aux prec" and ub="ub_sin_cos_aux prec" and j'=0,
OF \<open>0 \<le> real_of_float (x * x)\<close> f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps]
show ?lb and ?ub
by (auto simp add: power_mult power2_eq_square[of "real_of_float x"])
qed
lemma lb_sin_cos_aux_zero_le_one: "lb_sin_cos_aux prec n i j 0 \ 1"
by (cases j n rule: nat.exhaust[case_product nat.exhaust])
(auto intro!: float_plus_down_le order_trans[OF lapprox_rat])
lemma one_le_ub_sin_cos_aux: "odd n \ 1 \ ub_sin_cos_aux prec n i (Suc 0) 0"
by (cases n) (auto intro!: float_plus_up_le order_trans[OF _ rapprox_rat])
lemma cos_boundaries:
assumes "0 \ real_of_float x" and "x \ pi / 2"
shows "cos x \ {(lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) .. (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))}"
proof (cases "real_of_float x = 0")
case False
hence "real_of_float x \ 0" by auto
hence "0 < x" and "0 < real_of_float x"
using \<open>0 \<le> real_of_float x\<close> by auto
have "0 < x * x"
using \<open>0 < x\<close> by simp
have morph_to_if_power: "(\ i=0..
(\<Sum> i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/((fact i)) else 0) * x ^ i)"
(is "?sum = ?ifsum") for x n
proof -
have "?sum = ?sum + (\ j = 0 ..< n. 0)" by auto
also have "\ =
(\<Sum> j = 0 ..< n. (- 1) ^ ((2 * j) div 2) / ((fact (2 * j))) * x ^(2 * j)) + (\<Sum> j = 0 ..< n. 0)" by auto
also have "\ = (\ i = 0 ..< 2 * n. if even i then (- 1) ^ (i div 2) / ((fact i)) * x ^ i else 0)"
unfolding sum_split_even_odd atLeast0LessThan ..
also have "\ = (\ i = 0 ..< 2 * n. (if even i then (- 1) ^ (i div 2) / ((fact i)) else 0) * x ^ i)"
by (rule sum.cong) auto
finally show ?thesis .
qed
{ fix n :: nat assume "0 < n"
hence "0 < 2 * n" by auto
obtain t where "0 < t" and "t < real_of_float x" and
cos_eq: "cos x = (\ i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/((fact i)) else 0) * (real_of_float x) ^ i)
+ (cos (t + 1/2 * (2 * n) * pi) / (fact (2*n))) * (real_of_float x)^(2*n)"
(is "_ = ?SUM + ?rest / ?fact * ?pow")
using Maclaurin_cos_expansion2[OF \<open>0 < real_of_float x\<close> \<open>0 < 2 * n\<close>]
unfolding cos_coeff_def atLeast0LessThan by auto
have "cos t * (- 1) ^ n = cos t * cos (n * pi) + sin t * sin (n * pi)" by auto
also have "\ = cos (t + n * pi)" by (simp add: cos_add)
also have "\ = ?rest" by auto
finally have "cos t * (- 1) ^ n = ?rest" .
moreover
have "t \ pi / 2" using \t < real_of_float x\ and \x \ pi / 2\ by auto
hence "0 \ cos t" using \0 < t\ and cos_ge_zero by auto
ultimately have even: "even n \ 0 \ ?rest" and odd: "odd n \ 0 \ - ?rest " by auto
have "0 < ?fact" by auto
have "0 < ?pow" using \<open>0 < real_of_float x\<close> by auto
{
assume "even n"
have "(lb_sin_cos_aux prec n 1 1 (x * x)) \ ?SUM"
unfolding morph_to_if_power[symmetric] using cos_aux by auto
also have "\ \ cos x"
proof -
from even[OF \<open>even n\<close>] \<open>0 < ?fact\<close> \<open>0 < ?pow\<close>
have "0 \ (?rest / ?fact) * ?pow" by simp
thus ?thesis unfolding cos_eq by auto
qed
finally have "(lb_sin_cos_aux prec n 1 1 (x * x)) \ cos x" .
} note lb = this
{
assume "odd n"
have "cos x \ ?SUM"
proof -
from \<open>0 < ?fact\<close> and \<open>0 < ?pow\<close> and odd[OF \<open>odd n\<close>]
have "0 \ (- ?rest) / ?fact * ?pow"
by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le)
thus ?thesis unfolding cos_eq by auto
qed
also have "\ \ (ub_sin_cos_aux prec n 1 1 (x * x))"
unfolding morph_to_if_power[symmetric] using cos_aux by auto
finally have "cos x \ (ub_sin_cos_aux prec n 1 1 (x * x))" .
} note ub = this and lb
} note ub = this(1) and lb = this(2)
have "cos x \ (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))"
using ub[OF odd_pos[OF get_odd] get_odd] .
moreover have "(lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) \ cos x"
proof (cases "0 < get_even n")
case True
show ?thesis using lb[OF True get_even] .
next
case False
hence "get_even n = 0" by auto
have "- (pi / 2) \ x"
by (rule order_trans[OF _ \<open>0 < real_of_float x\<close>[THEN less_imp_le]]) auto
with \<open>x \<le> pi / 2\<close> show ?thesis
unfolding \<open>get_even n = 0\<close> lb_sin_cos_aux.simps minus_float.rep_eq zero_float.rep_eq
using cos_ge_zero by auto
qed
ultimately show ?thesis by auto
next
case True
hence "x = 0"
by (simp add: real_of_float_eq)
thus ?thesis
using lb_sin_cos_aux_zero_le_one one_le_ub_sin_cos_aux
by simp
qed
lemma sin_aux:
assumes "0 \ real_of_float x"
shows "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \
(\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i + 1))) * x^(2 * i + 1))" (is "?lb")
and "(\ i=0..
(x * ub_sin_cos_aux prec n 2 1 (x * x))" (is "?ub")
proof -
have "0 \ real_of_float (x * x)" by auto
let "?f n" = "fact (2 * n + 1) :: nat"
have f_eq: "?f (Suc n) = ?f n * ((\i. i + 2) ^^ n) 2 * (((\i. i + 2) ^^ n) 2 + 1)" for n
proof -
have F: "\m. ((\i. i + 2) ^^ n) m = m + 2 * n" by (induct n) auto
show ?thesis
unfolding F by auto
qed
from horner_bounds[where lb="lb_sin_cos_aux prec" and ub="ub_sin_cos_aux prec" and j'=0,
OF \<open>0 \<le> real_of_float (x * x)\<close> f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps]
show "?lb" and "?ub" using \<open>0 \<le> real_of_float x\<close>
apply (simp_all only: power_add power_one_right mult.assoc[symmetric] sum_distrib_right[symmetric])
apply (simp_all only: mult.commute[where 'a=real] of_nat_fact)
apply (auto intro!: mult_left_mono simp add: power_mult power2_eq_square[of "real_of_float x"])
done
qed
lemma sin_boundaries:
assumes "0 \ real_of_float x"
and "x \ pi / 2"
shows "sin x \ {(x * lb_sin_cos_aux prec (get_even n) 2 1 (x * x)) .. (x * ub_sin_cos_aux prec (get_odd n) 2 1 (x * x))}"
proof (cases "real_of_float x = 0")
case False
hence "real_of_float x \ 0" by auto
hence "0 < x" and "0 < real_of_float x"
using \<open>0 \<le> real_of_float x\<close> by auto
have "0 < x * x"
using \<open>0 < x\<close> by simp
have sum_morph: "(\j = 0 ..< n. (- 1) ^ (((2 * j + 1) - Suc 0) div 2) / ((fact (2 * j + 1))) * x ^(2 * j + 1)) =
(\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * x ^ i)"
(is "?SUM = _") for x :: real and n
proof -
have pow: "!!i. x ^ (2 * i + 1) = x * x ^ (2 * i)"
by auto
have "?SUM = (\ j = 0 ..< n. 0) + ?SUM"
by auto
also have "\ = (\ i = 0 ..< 2 * n. if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / ((fact i)) * x ^ i)"
unfolding sum_split_even_odd atLeast0LessThan ..
also have "\ = (\ i = 0 ..< 2 * n. (if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / ((fact i))) * x ^ i)"
by (rule sum.cong) auto
finally show ?thesis .
qed
{ fix n :: nat assume "0 < n"
hence "0 < 2 * n + 1" by auto
obtain t where "0 < t" and "t < real_of_float x" and
sin_eq: "sin x = (\ i = 0 ..< 2 * n + 1. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real_of_float x) ^ i)
+ (sin (t + 1/2 * (2 * n + 1) * pi) / (fact (2*n + 1))) * (real_of_float x)^(2*n + 1)"
(is "_ = ?SUM + ?rest / ?fact * ?pow")
using Maclaurin_sin_expansion3[OF \<open>0 < 2 * n + 1\<close> \<open>0 < real_of_float x\<close>]
unfolding sin_coeff_def atLeast0LessThan by auto
have "?rest = cos t * (- 1) ^ n"
unfolding sin_add cos_add of_nat_add distrib_right distrib_left by auto
moreover
have "t \ pi / 2"
using \<open>t < real_of_float x\<close> and \<open>x \<le> pi / 2\<close> by auto
hence "0 \ cos t"
using \<open>0 < t\<close> and cos_ge_zero by auto
ultimately have even: "even n \ 0 \ ?rest" and odd: "odd n \ 0 \ - ?rest"
by auto
have "0 < ?fact"
by (simp del: fact_Suc)
have "0 < ?pow"
using \<open>0 < real_of_float x\<close> by (rule zero_less_power)
{
assume "even n"
have "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \
(\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real_of_float x) ^ i)"
using sin_aux[OF \<open>0 \<le> real_of_float x\<close>] unfolding sum_morph[symmetric] by auto
also have "\ \ ?SUM" by auto
also have "\ \ sin x"
proof -
from even[OF \<open>even n\<close>] \<open>0 < ?fact\<close> \<open>0 < ?pow\<close>
have "0 \ (?rest / ?fact) * ?pow" by simp
thus ?thesis unfolding sin_eq by auto
qed
finally have "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \ sin x" .
} note lb = this
{
assume "odd n"
have "sin x \ ?SUM"
proof -
from \<open>0 < ?fact\<close> and \<open>0 < ?pow\<close> and odd[OF \<open>odd n\<close>]
have "0 \ (- ?rest) / ?fact * ?pow"
by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le)
thus ?thesis unfolding sin_eq by auto
qed
also have "\ \ (\ i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real_of_float x) ^ i)"
by auto
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.92 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|
|
|
|
|