(* Title: HOL/Tools/BNF/bnf_gfp_grec_sugar.ML
Author: Aymeric Bouzy, Ecole polytechnique
Author: Jasmin Blanchette, Inria, LORIA, MPII
Author: Dmitriy Traytel, ETH Zürich
Copyright 2015, 2016
Generalized corecursor sugar ("corec" and friends).
*)
signature BNF_GFP_GREC_SUGAR =
sig
datatype corec_option =
Plugins_Option of Proof.context -> Plugin_Name.filter |
Friend_Option |
Transfer_Option
val parse_corec_equation: Proof.context -> term list -> term -> term list * term
val explore_corec_equation: Proof.context -> bool -> bool -> string -> term ->
BNF_GFP_Grec_Sugar_Util.s_parse_info -> typ -> term list * term -> term list * term
val build_corecUU_arg_and_goals: bool -> term -> term list * term -> local_theory ->
(((thm list * thm list * thm list) * term list) * term) * local_theory
val derive_eq_corecUU: Proof.context -> BNF_GFP_Grec.corec_info -> term -> term -> thm -> thm
val derive_unique: Proof.context -> morphism -> term -> BNF_GFP_Grec.corec_info -> string ->
thm -> thm
val corec_cmd: bool -> corec_option list -> (binding * string option * mixfix) list * string ->
local_theory -> local_theory
val corecursive_cmd: bool -> corec_option list ->
(binding * string option * mixfix) list * string -> local_theory -> Proof.state
val friend_of_corec_cmd: (string * string option) * string -> local_theory -> Proof.state
val coinduction_upto_cmd: string * string -> local_theory -> local_theory
end;
structure BNF_GFP_Grec_Sugar : BNF_GFP_GREC_SUGAR =
struct
open Ctr_Sugar
open BNF_Util
open BNF_Tactics
open BNF_Def
open BNF_Comp
open BNF_FP_Util
open BNF_FP_Def_Sugar
open BNF_FP_N2M_Sugar
open BNF_GFP_Util
open BNF_GFP_Rec_Sugar
open BNF_FP_Rec_Sugar_Transfer
open BNF_GFP_Grec
open BNF_GFP_Grec_Sugar_Util
open BNF_GFP_Grec_Sugar_Tactics
val cong_N = "cong_";
val baseN = "base";
val reflN = "refl";
val symN = "sym";
val transN = "trans";
val cong_introsN = prefix cong_N "intros";
val codeN = "code";
val coinductN = "coinduct";
val coinduct_uptoN = "coinduct_upto";
val corecN = "corec";
val ctrN = "ctr";
val discN = "disc";
val disc_iffN = "disc_iff";
val eq_algrhoN = "eq_algrho";
val eq_corecUUN = "eq_corecUU";
val friendN = "friend";
val inner_elimN = "inner_elim";
val inner_inductN = "inner_induct";
val inner_simpN = "inner_simp";
val rhoN = "rho";
val selN = "sel";
val uniqueN = "unique";
val inner_fp_suffix = "_inner_fp";
val nitpicksimp_attrs = @{attributes [nitpick_simp]};
val simp_attrs = @{attributes [simp]};
val unfold_id_thms1 =
map (fn thm => thm RS eq_reflection) @{thms id_bnf_o o_id_bnf id_apply o_apply} @
@{thms fst_def[abs_def, symmetric] snd_def[abs_def, symmetric]};
fun unfold_id_bnf_etc lthy =
let val thy = Proof_Context.theory_of lthy in
Raw_Simplifier.rewrite_term thy unfold_id_thms1 []
#> Raw_Simplifier.rewrite_term thy @{thms BNF_Composition.id_bnf_def} []
end;
datatype corec_option =
Plugins_Option of Proof.context -> Plugin_Name.filter |
Friend_Option |
Transfer_Option;
val corec_option_parser = Parse.group (K "option")
(Plugin_Name.parse_filter >> Plugins_Option
|| Parse.reserved "friend" >> K Friend_Option
|| Parse.reserved "transfer" >> K Transfer_Option);
type codatatype_extra =
{case_dtor: thm,
case_trivial: thm,
abs_rep_transfers: thm list};
fun morph_codatatype_extra phi ({case_dtor, case_trivial, abs_rep_transfers} : codatatype_extra) =
{case_dtor = Morphism.thm phi case_dtor, case_trivial = Morphism.thm phi case_trivial,
abs_rep_transfers = map (Morphism.thm phi) abs_rep_transfers};
val transfer_codatatype_extra = morph_codatatype_extra o Morphism.transfer_morphism;
type coinduct_extra =
{coinduct: thm,
coinduct_attrs: Token.src list,
cong_intro_pairs: (string * thm) list};
fun morph_coinduct_extra phi ({coinduct, coinduct_attrs, cong_intro_pairs} : coinduct_extra) =
{coinduct = Morphism.thm phi coinduct, coinduct_attrs = coinduct_attrs,
cong_intro_pairs = map (apsnd (Morphism.thm phi)) cong_intro_pairs};
val transfer_coinduct_extra = morph_coinduct_extra o Morphism.transfer_morphism;
type friend_extra =
{eq_algrhos: thm list,
algrho_eqs: thm list};
val empty_friend_extra = {eq_algrhos = [], algrho_eqs = []};
fun merge_friend_extras ({eq_algrhos = eq_algrhos1, algrho_eqs = algrho_eqs1},
{eq_algrhos = eq_algrhos2, algrho_eqs = algrho_eqs2}) =
{eq_algrhos = union Thm.eq_thm_prop eq_algrhos1 eq_algrhos2,
algrho_eqs = union Thm.eq_thm_prop algrho_eqs1 algrho_eqs2};
type corec_sugar_data =
codatatype_extra Symtab.table * coinduct_extra Symtab.table * friend_extra Symtab.table;
structure Data = Generic_Data
(
type T = corec_sugar_data;
val empty = (Symtab.empty, Symtab.empty, Symtab.empty);
val extend = I;
fun merge data : T =
(Symtab.merge (K true) (apply2 #1 data), Symtab.merge (K true) (apply2 #2 data),
Symtab.join (K merge_friend_extras) (apply2 #3 data));
);
fun register_codatatype_extra fpT_name extra =
Local_Theory.declaration {syntax = false, pervasive = true} (fn phi =>
Data.map (@{apply 3(1)} (Symtab.update (fpT_name, morph_codatatype_extra phi extra))));
fun codatatype_extra_of ctxt =
Symtab.lookup (#1 (Data.get (Context.Proof ctxt)))
#> Option.map (transfer_codatatype_extra (Proof_Context.theory_of ctxt));
fun all_codatatype_extras_of ctxt =
Symtab.dest (#1 (Data.get (Context.Proof ctxt)));
fun register_coinduct_extra fpT_name extra =
Local_Theory.declaration {syntax = false, pervasive = true} (fn phi =>
Data.map (@{apply 3(2)} (Symtab.update (fpT_name, morph_coinduct_extra phi extra))));
fun coinduct_extra_of ctxt =
Symtab.lookup (#2 (Data.get (Context.Proof ctxt)))
#> Option.map (transfer_coinduct_extra (Proof_Context.theory_of ctxt));
fun register_friend_extra fun_name eq_algrho algrho_eq =
Local_Theory.declaration {syntax = false, pervasive = true} (fn phi =>
Data.map (@{apply 3(3)} (Symtab.map_default (fun_name, empty_friend_extra)
(fn {eq_algrhos, algrho_eqs} =>
{eq_algrhos = Morphism.thm phi eq_algrho :: eq_algrhos,
algrho_eqs = Morphism.thm phi algrho_eq :: algrho_eqs}))));
fun all_friend_extras_of ctxt =
Symtab.dest (#3 (Data.get (Context.Proof ctxt)));
fun coinduct_extras_of_generic context =
corec_infos_of_generic context
#> map (#corecUU #> dest_Const #> fst #> Symtab.lookup (#2 (Data.get context)) #> the
#> transfer_coinduct_extra (Context.theory_of context));
fun get_coinduct_uptos fpT_name context =
coinduct_extras_of_generic context fpT_name |> map #coinduct;
fun get_cong_all_intros fpT_name context =
coinduct_extras_of_generic context fpT_name |> maps (#cong_intro_pairs #> map snd);
fun get_cong_intros fpT_name name context =
coinduct_extras_of_generic context fpT_name
|> map_filter (#cong_intro_pairs #> (fn ps => AList.lookup (op =) ps name));
fun ctr_names_of_fp_name lthy fpT_name =
fpT_name |> fp_sugar_of lthy |> the |> #fp_ctr_sugar |> #ctr_sugar |> #ctrs
|> map (Long_Name.base_name o name_of_ctr);
fun register_coinduct_dynamic_base fpT_name lthy =
let val fp_b = Binding.name (Long_Name.base_name fpT_name) in
lthy
|> fold Local_Theory.add_thms_dynamic
((mk_fp_binding fp_b coinduct_uptoN, get_coinduct_uptos fpT_name) ::
map (fn N =>
let val N = cong_N ^ N in
(mk_fp_binding fp_b N, get_cong_intros fpT_name N)
end)
([baseN, reflN, symN, transN] @ ctr_names_of_fp_name lthy fpT_name))
|> Local_Theory.add_thms_dynamic
(mk_fp_binding fp_b cong_introsN, get_cong_all_intros fpT_name)
end;
fun register_coinduct_dynamic_friend fpT_name friend_name =
let
val fp_b = Binding.name (Long_Name.base_name fpT_name);
val friend_base_name = cong_N ^ Long_Name.base_name friend_name;
in
Local_Theory.add_thms_dynamic
(mk_fp_binding fp_b friend_base_name, get_cong_intros fpT_name friend_base_name)
end;
fun derive_case_dtor ctxt fpT_name =
let
val thy = Proof_Context.theory_of ctxt;
val SOME ({fp_res_index, fp_res = {dtors = dtors0, dtor_ctors, ...},
absT_info = {rep = rep0, abs_inverse, ...},
fp_ctr_sugar = {ctr_defs, ctr_sugar = {casex, exhaust, case_thms, ...}, ...}, ...}) =
fp_sugar_of ctxt fpT_name;
val (f_Ts, Type (_, [fpT as Type (_, As), _])) = strip_fun_type (fastype_of casex);
val x_Tss = map binder_types f_Ts;
val (((u, fs), xss), _) = ctxt
|> yield_singleton (mk_Frees "y") fpT
||>> mk_Frees "f" f_Ts
||>> mk_Freess "x" x_Tss;
val dtor0 = nth dtors0 fp_res_index;
val dtor = mk_dtor As dtor0;
val u' = dtor $ u;
val absT = fastype_of u';
val rep = mk_rep absT rep0;
val goal = mk_Trueprop_eq (list_comb (casex, fs) $ u,
mk_case_absumprod absT rep fs xss xss $ u')
|> Raw_Simplifier.rewrite_term thy @{thms comp_def[THEN eq_reflection]} [];
val vars = map (fst o dest_Free) (u :: fs);
val dtor_ctor = nth dtor_ctors fp_res_index;
in
Goal.prove_sorry ctxt vars [] goal (fn {context = ctxt, prems = _} =>
mk_case_dtor_tac ctxt u abs_inverse dtor_ctor ctr_defs exhaust case_thms)
|> Thm.close_derivation \<^here>
end;
fun derive_case_trivial ctxt fpT_name =
let
val SOME {casex, exhaust, case_thms, ...} = ctr_sugar_of ctxt fpT_name;
val Type (_, As0) = domain_type (body_fun_type (fastype_of casex));
val (As, _) = ctxt
|> mk_TFrees' (map Type.sort_of_atyp As0);
val fpT = Type (fpT_name, As);
val (var_name, ()) = singleton (Variable.variant_frees ctxt []) ("x", ());
val var = Free (var_name, fpT);
val goal = mk_Trueprop_eq (expand_to_ctr_term ctxt fpT var, var);
val exhaust' = infer_instantiate' ctxt [SOME (Thm.cterm_of ctxt var)] exhaust;
in
Goal.prove_sorry ctxt [var_name] [] goal (fn {context = ctxt, prems = _} =>
HEADGOAL (rtac ctxt exhaust') THEN ALLGOALS (hyp_subst_tac ctxt) THEN
unfold_thms_tac ctxt case_thms THEN ALLGOALS (rtac ctxt refl))
|> Thm.close_derivation \<^here>
end;
fun mk_abs_rep_transfers ctxt fpT_name =
[mk_abs_transfer ctxt fpT_name, mk_rep_transfer ctxt fpT_name]
handle Fail _ => [];
fun ensure_codatatype_extra fpT_name ctxt =
(case codatatype_extra_of ctxt fpT_name of
NONE =>
let val abs_rep_transfers = mk_abs_rep_transfers ctxt fpT_name in
ctxt
|> register_codatatype_extra fpT_name
{case_dtor = derive_case_dtor ctxt fpT_name,
case_trivial = derive_case_trivial ctxt fpT_name,
abs_rep_transfers = abs_rep_transfers}
|> set_transfer_rule_attrs abs_rep_transfers
end
| SOME {abs_rep_transfers, ...} => ctxt |> set_transfer_rule_attrs abs_rep_transfers);
fun setup_base fpT_name =
register_coinduct_dynamic_base fpT_name
#> ensure_codatatype_extra fpT_name;
fun is_set ctxt (const_name, T) =
(case T of
Type (\<^type_name>\<open>fun\<close>, [Type (fpT_name, _), Type (\<^type_name>\<open>set\<close>, [_])]) =>
(case bnf_of ctxt fpT_name of
SOME bnf => exists (fn Const (s, _) => s = const_name | _ => false) (sets_of_bnf bnf)
| NONE => false)
| _ => false);
fun case_eq_if_thms_of_term ctxt t =
let val ctr_sugars = map_filter (ctr_sugar_of_case ctxt o fst) (Term.add_consts t []) in
maps #case_eq_ifs ctr_sugars
end;
fun all_algrho_eqs_of ctxt =
maps (#algrho_eqs o snd) (all_friend_extras_of ctxt);
fun derive_code ctxt inner_fp_simps goal
{sig_fp_sugars, ssig_fp_sugar, eval, eval_simps, all_algLam_algs, corecUU_thm, ...} fun_t
fun_def =
let
val fun_T = fastype_of fun_t;
val (arg_Ts, Type (fpT_name, _)) = strip_type fun_T;
val num_args = length arg_Ts;
val SOME {pre_bnf, fp_bnf, absT_info, fp_nesting_bnfs, live_nesting_bnfs, fp_ctr_sugar, ...} =
fp_sugar_of ctxt fpT_name;
val SOME {case_trivial, ...} = codatatype_extra_of ctxt fpT_name;
val ctr_sugar = #ctr_sugar fp_ctr_sugar;
val pre_map_def = map_def_of_bnf pre_bnf;
val abs_inverse = #abs_inverse absT_info;
val ctr_defs = #ctr_defs fp_ctr_sugar;
val case_eq_ifs = #case_eq_ifs ctr_sugar @ case_eq_if_thms_of_term ctxt goal;
val all_sig_map_thms = maps (#map_thms o #fp_bnf_sugar) sig_fp_sugars;
val fp_map_ident = map_ident_of_bnf fp_bnf;
val fpsig_nesting_bnfs = fp_nesting_bnfs @ maps #live_nesting_bnfs sig_fp_sugars;
val fpsig_nesting_T_names = map (fst o dest_Type o T_of_bnf) fpsig_nesting_bnfs;
val fpsig_nesting_fp_sugars = map_filter (fp_sugar_of ctxt) fpsig_nesting_T_names;
val fpsig_nesting_fp_bnf_sugars = map #fp_bnf_sugar fpsig_nesting_fp_sugars;
val ssig_fp_bnf_sugar = #fp_bnf_sugar ssig_fp_sugar;
val ssig_bnf = #fp_bnf ssig_fp_sugar;
val ssig_map = map_of_bnf ssig_bnf;
val fpsig_nesting_maps = map map_of_bnf fpsig_nesting_bnfs;
val fpsig_nesting_map_ident0s = map map_ident0_of_bnf fpsig_nesting_bnfs;
val fpsig_nesting_map_comps = map map_comp_of_bnf fpsig_nesting_bnfs;
val fpsig_nesting_map_thms = maps #map_thms fpsig_nesting_fp_bnf_sugars;
val live_nesting_map_ident0s = map map_ident0_of_bnf live_nesting_bnfs;
val ssig_map_thms = #map_thms ssig_fp_bnf_sugar;
val all_algLam_alg_pointfuls = map (mk_pointful ctxt) all_algLam_algs;
in
Variable.add_free_names ctxt goal []
|> (fn vars => Goal.prove_sorry ctxt vars [] goal (fn {context = ctxt, prems = _} =>
mk_code_tac ctxt num_args fpsig_nesting_maps ssig_map eval pre_map_def abs_inverse
fpsig_nesting_map_ident0s fpsig_nesting_map_comps fpsig_nesting_map_thms
live_nesting_map_ident0s fp_map_ident case_trivial ctr_defs case_eq_ifs corecUU_thm
all_sig_map_thms ssig_map_thms all_algLam_alg_pointfuls (all_algrho_eqs_of ctxt) eval_simps
inner_fp_simps fun_def))
|> Thm.close_derivation \<^here>
end;
fun derive_unique ctxt phi code_goal
{sig_fp_sugars, ssig_fp_sugar, eval, eval_simps, all_algLam_algs, corecUU_unique, ...} fpT_name
eq_corecUU =
let
val SOME {pre_bnf, fp_bnf, absT_info, fp_nesting_bnfs, live_nesting_bnfs, fp_ctr_sugar, ...} =
fp_sugar_of ctxt fpT_name;
val SOME {case_trivial, ...} = codatatype_extra_of ctxt fpT_name;
val ctr_sugar = #ctr_sugar fp_ctr_sugar;
val pre_map_def = map_def_of_bnf pre_bnf;
val abs_inverse = #abs_inverse absT_info;
val ctr_defs = #ctr_defs fp_ctr_sugar;
val case_eq_ifs = #case_eq_ifs ctr_sugar @ case_eq_if_thms_of_term ctxt code_goal;
val all_sig_map_thms = maps (#map_thms o #fp_bnf_sugar) sig_fp_sugars;
val fp_map_ident = map_ident_of_bnf fp_bnf;
val fpsig_nesting_bnfs = fp_nesting_bnfs @ maps #live_nesting_bnfs sig_fp_sugars;
val fpsig_nesting_T_names = map (fst o dest_Type o T_of_bnf) fpsig_nesting_bnfs;
val fpsig_nesting_fp_sugars = map_filter (fp_sugar_of ctxt) fpsig_nesting_T_names;
val fpsig_nesting_fp_bnf_sugars = map #fp_bnf_sugar fpsig_nesting_fp_sugars;
val ssig_fp_bnf_sugar = #fp_bnf_sugar ssig_fp_sugar;
val ssig_bnf = #fp_bnf ssig_fp_sugar;
val ssig_map = map_of_bnf ssig_bnf;
val fpsig_nesting_maps = map map_of_bnf fpsig_nesting_bnfs;
val fpsig_nesting_map_ident0s = map map_ident0_of_bnf fpsig_nesting_bnfs;
val fpsig_nesting_map_comps = map map_comp_of_bnf fpsig_nesting_bnfs;
val fpsig_nesting_map_thms = maps #map_thms fpsig_nesting_fp_bnf_sugars;
val live_nesting_map_ident0s = map map_ident0_of_bnf live_nesting_bnfs;
val ssig_map_thms = #map_thms ssig_fp_bnf_sugar;
val all_algLam_alg_pointfuls = map (mk_pointful ctxt) all_algLam_algs;
val \<^const>\<open>Trueprop\<close> $ (Const (\<^const_name>\<open>HOL.eq\<close>, _) $ lhs $ rhs) = code_goal;
val (fun_t, args) = strip_comb lhs;
val closed_rhs = fold_rev lambda args rhs;
val fun_T = fastype_of fun_t;
val num_args = num_binder_types fun_T;
val f = Free (singleton (Variable.variant_frees ctxt []) ("f", fun_T));
val is_self_call = curry (op aconv) fun_t;
val has_self_call = exists_subterm is_self_call;
fun fify args (t $ u) = fify (u :: args) t $ fify [] u
| fify _ (Abs (s, T, t)) = Abs (s, T, fify [] t)
| fify args t = if t = fun_t andalso not (exists has_self_call args) then f else t;
val goal = Logic.mk_implies (mk_Trueprop_eq (f, fify [] closed_rhs), mk_Trueprop_eq (f, fun_t))
|> Morphism.term phi;
in
Goal.prove_sorry ctxt [fst (dest_Free f)] [] goal (fn {context = ctxt, prems = _} =>
mk_unique_tac ctxt num_args fpsig_nesting_maps ssig_map eval pre_map_def abs_inverse
fpsig_nesting_map_ident0s fpsig_nesting_map_comps fpsig_nesting_map_thms
live_nesting_map_ident0s fp_map_ident case_trivial ctr_defs case_eq_ifs all_sig_map_thms
ssig_map_thms all_algLam_alg_pointfuls (all_algrho_eqs_of ctxt) eval_simps corecUU_unique
eq_corecUU)
|> Thm.close_derivation \<^here>
end;
fun derive_last_disc ctxt fcT_name =
let
val SOME {T = fcT, discs, exhaust, disc_thmss, ...} = ctr_sugar_of ctxt fcT_name;
val (u, _) = ctxt
|> yield_singleton (mk_Frees "x") fcT;
val udiscs = map (rapp u) discs;
val (not_udiscs, last_udisc) = split_last udiscs
|>> map HOLogic.mk_not;
val goal = mk_Trueprop_eq (last_udisc, foldr1 HOLogic.mk_conj not_udiscs);
in
Goal.prove_sorry ctxt [fst (dest_Free u)] [] goal (fn {context = ctxt, prems = _} =>
mk_last_disc_tac ctxt u exhaust (flat disc_thmss))
|> Thm.close_derivation \<^here>
end;
fun derive_eq_algrho ctxt {sig_fp_sugars, ssig_fp_sugar, eval, eval_simps, all_algLam_algs,
corecUU_unique, ...}
({algrho = algrho0, dtor_algrho, ...} : friend_info) fun_t k_T code_goal const_transfers rho_def
eq_corecUU =
let
val fun_T = fastype_of fun_t;
val (arg_Ts, Type (fpT_name, Ts)) = strip_type fun_T;
val num_args = length arg_Ts;
val SOME {fp_res_index, fp_res, pre_bnf, fp_bnf, absT_info, fp_nesting_bnfs, live_nesting_bnfs,
fp_ctr_sugar, ...} =
fp_sugar_of ctxt fpT_name;
val SOME {case_dtor, ...} = codatatype_extra_of ctxt fpT_name;
val fp_nesting_Ts = map T_of_bnf fp_nesting_bnfs;
fun is_nullary_disc_def (\<^const>\<open>Trueprop\<close> $ (Const (\<^const_name>\<open>HOL.eq\<close>, _) $ _
$ (Const (\<^const_name>\<open>HOL.eq\<close>, _) $ _ $ _))) = true
| is_nullary_disc_def (Const (\<^const_name>\<open>Pure.eq\<close>, _) $ _
$ (Const (\<^const_name>\<open>HOL.eq\<close>, _) $ _ $ _)) = true
| is_nullary_disc_def _ = false;
val dtor_ctor = nth (#dtor_ctors fp_res) fp_res_index;
val ctor_iff_dtor = #ctor_iff_dtor fp_ctr_sugar;
val ctr_sugar = #ctr_sugar fp_ctr_sugar;
val pre_map_def = map_def_of_bnf pre_bnf;
val abs_inverse = #abs_inverse absT_info;
val ctr_defs = #ctr_defs fp_ctr_sugar;
val nullary_disc_defs = filter (is_nullary_disc_def o Thm.prop_of) (#disc_defs ctr_sugar);
val disc_sel_eq_cases = #disc_eq_cases ctr_sugar @ #sel_defs ctr_sugar;
val case_eq_ifs = #case_eq_ifs ctr_sugar @ case_eq_if_thms_of_term ctxt code_goal;
val all_sig_map_thms = maps (#map_thms o #fp_bnf_sugar) sig_fp_sugars;
fun add_tnameT (Type (s, Ts)) = insert (op =) s #> fold add_tnameT Ts
| add_tnameT _ = I;
fun map_disc_sels'_of s =
(case fp_sugar_of ctxt s of
SOME {fp_bnf_sugar = {map_disc_iffs, map_selss, ...}, ...} =>
let
val map_selss' =
if length map_selss <= 1 then map_selss
else map (map (unfold_thms ctxt (no_refl [derive_last_disc ctxt s]))) map_selss;
in
map_disc_iffs @ flat map_selss'
end
| NONE => []);
fun mk_const_pointful_natural const_transfer =
SOME (mk_pointful_natural_from_transfer ctxt const_transfer)
handle UNNATURAL () => NONE;
val const_pointful_natural_opts = map mk_const_pointful_natural const_transfers;
val const_pointful_naturals = map_filter I const_pointful_natural_opts;
val fp_nesting_k_T_names = fold add_tnameT (k_T :: fp_nesting_Ts) [];
val fp_nesting_k_map_disc_sels' = maps map_disc_sels'_of fp_nesting_k_T_names;
val fp_map_ident = map_ident_of_bnf fp_bnf;
val fpsig_nesting_bnfs = fp_nesting_bnfs @ maps #live_nesting_bnfs sig_fp_sugars;
val fpsig_nesting_T_names = map (fst o dest_Type o T_of_bnf) fpsig_nesting_bnfs;
val fpsig_nesting_fp_sugars = map_filter (fp_sugar_of ctxt) fpsig_nesting_T_names;
val fpsig_nesting_fp_bnf_sugars = map #fp_bnf_sugar fpsig_nesting_fp_sugars;
val ssig_fp_bnf_sugar = #fp_bnf_sugar ssig_fp_sugar;
val ssig_bnf = #fp_bnf ssig_fp_sugar;
val ssig_map = map_of_bnf ssig_bnf;
val fpsig_nesting_maps = map map_of_bnf fpsig_nesting_bnfs;
val fpsig_nesting_map_ident0s = map map_ident0_of_bnf fpsig_nesting_bnfs;
val fpsig_nesting_map_comps = map map_comp_of_bnf fpsig_nesting_bnfs;
val fpsig_nesting_map_thms = maps #map_thms fpsig_nesting_fp_bnf_sugars;
val live_nesting_map_ident0s = map map_ident0_of_bnf live_nesting_bnfs;
val ssig_map_thms = #map_thms ssig_fp_bnf_sugar;
val all_algLam_alg_pointfuls = map (mk_pointful ctxt) all_algLam_algs;
val ctor = nth (#ctors fp_res) fp_res_index;
val abs = #abs absT_info;
val rep = #rep absT_info;
val algrho = mk_ctr Ts algrho0;
val goal = mk_Trueprop_eq (fun_t, abs_curried_balanced arg_Ts algrho);
fun const_of_transfer thm =
(case Thm.prop_of thm of \<^const>\<open>Trueprop\<close> $ (_ $ cst $ _) => cst);
val eq_algrho =
Goal.prove (*no sorry*) ctxt [] [] goal (fn {context = ctxt, prems = _} =>
mk_eq_algrho_tac ctxt fpsig_nesting_maps abs rep ctor ssig_map eval pre_map_def abs_inverse
fpsig_nesting_map_ident0s fpsig_nesting_map_comps fpsig_nesting_map_thms
live_nesting_map_ident0s fp_map_ident dtor_ctor ctor_iff_dtor ctr_defs nullary_disc_defs
disc_sel_eq_cases case_dtor case_eq_ifs const_pointful_naturals
fp_nesting_k_map_disc_sels' rho_def dtor_algrho corecUU_unique eq_corecUU all_sig_map_thms
ssig_map_thms all_algLam_alg_pointfuls (all_algrho_eqs_of ctxt) eval_simps)
|> Thm.close_derivation \<^here>
handle e as ERROR _ =>
(case filter (is_none o snd) (const_transfers ~~ const_pointful_natural_opts) of
[] => Exn.reraise e
| thm_nones =>
error ("Failed to state naturality property for " ^
commas (map (Syntax.string_of_term ctxt o const_of_transfer o fst) thm_nones)));
val algrho_eq = eq_algrho RS (mk_curry_uncurryN_balanced ctxt num_args RS iffD2) RS sym;
in
(eq_algrho, algrho_eq)
end;
fun prime_rho_transfer_goal ctxt fpT_name rho_def goal =
let
val thy = Proof_Context.theory_of ctxt;
val SOME {pre_bnf, ...} = fp_sugar_of ctxt fpT_name;
val SOME {abs_rep_transfers, ...} = codatatype_extra_of ctxt fpT_name;
val simps = rel_def_of_bnf pre_bnf :: rho_transfer_simps;
val fold_rho = unfold_thms ctxt [rho_def RS @{thm symmetric}];
fun derive_unprimed rho_transfer' =
Variable.add_free_names ctxt goal []
|> (fn vars => Goal.prove_sorry ctxt vars [] goal (fn {context = ctxt, prems = _} =>
unfold_thms_tac ctxt simps THEN HEADGOAL (rtac ctxt rho_transfer')))
|> Thm.close_derivation \<^here>;
val goal' = Raw_Simplifier.rewrite_term thy simps [] goal;
in
if null abs_rep_transfers then (goal', derive_unprimed #> fold_rho)
else (goal, fold_rho)
end;
fun derive_rho_transfer_folded ctxt fpT_name const_transfers rho_def goal =
let
val SOME {pre_bnf, ...} = fp_sugar_of ctxt fpT_name;
val SOME {abs_rep_transfers, ...} = codatatype_extra_of ctxt fpT_name;
in
Variable.add_free_names ctxt goal []
|> (fn vars => Goal.prove (*no sorry*) ctxt vars [] goal (fn {context = ctxt, prems = _} =>
mk_rho_transfer_tac ctxt (null abs_rep_transfers) (rel_def_of_bnf pre_bnf)
const_transfers))
|> unfold_thms ctxt [rho_def RS @{thm symmetric}]
|> Thm.close_derivation \<^here>
end;
fun mk_cong_intro_ctr_or_friend_goal ctxt fpT Rcong alg =
let
val xy_Ts = binder_types (fastype_of alg);
val ((xs, ys), _) = ctxt
|> mk_Frees "x" xy_Ts
||>> mk_Frees "y" xy_Ts;
fun mk_prem xy_T x y =
build_rel [] ctxt [fpT] [] (fn (T, _) => if T = fpT then Rcong else HOLogic.eq_const T)
(xy_T, xy_T) $ x $ y;
val prems = @{map 3} mk_prem xy_Ts xs ys;
val concl = Rcong $ list_comb (alg, xs) $ list_comb (alg, ys);
in
Logic.list_implies (map HOLogic.mk_Trueprop prems, HOLogic.mk_Trueprop concl)
end;
fun derive_cong_ctr_intros ctxt cong_ctor_intro =
let
val \<^const>\<open>Pure.imp\<close> $ _ $ (\<^const>\<open>Trueprop\<close> $ ((Rcong as _ $ _) $ _ $ (ctor $ _))) =
Thm.prop_of cong_ctor_intro;
val fpT as Type (fpT_name, fp_argTs) = range_type (fastype_of ctor);
val SOME {pre_bnf, absT_info = {abs_inverse, ...},
fp_ctr_sugar = {ctr_defs, ctr_sugar = {ctrs = ctrs0, ...}, ...}, ...} =
fp_sugar_of ctxt fpT_name;
val ctrs = map (mk_ctr fp_argTs) ctrs0;
val pre_rel_def = rel_def_of_bnf pre_bnf;
fun prove ctr_def goal =
Variable.add_free_names ctxt goal []
|> (fn vars => Goal.prove_sorry ctxt vars [] goal (fn {context = ctxt, prems = _} =>
mk_cong_intro_ctr_or_friend_tac ctxt ctr_def [pre_rel_def, abs_inverse] cong_ctor_intro))
|> Thm.close_derivation \<^here>;
val goals = map (mk_cong_intro_ctr_or_friend_goal ctxt fpT Rcong) ctrs;
in
map2 prove ctr_defs goals
end;
fun derive_cong_friend_intro ctxt cong_algrho_intro =
let
val \<^const>\<open>Pure.imp\<close> $ _ $ (\<^const>\<open>Trueprop\<close> $ ((Rcong as _ $ _) $ _
$ ((algrho as Const (algrho_name, _)) $ _))) =
Thm.prop_of cong_algrho_intro;
val fpT as Type (_, fp_argTs) = range_type (fastype_of algrho);
fun has_algrho (\<^const>\<open>Trueprop\<close> $ (Const (\<^const_name>\<open>HOL.eq\<close>, _) $ _ $ rhs)) =
fst (dest_Const (head_of (strip_abs_body rhs))) = algrho_name;
val eq_algrho :: _ =
maps (filter (has_algrho o Thm.prop_of) o #eq_algrhos o snd) (all_friend_extras_of ctxt);
val \<^const>\<open>Trueprop\<close> $ (Const (\<^const_name>\<open>HOL.eq\<close>, _) $ friend0 $ _) = Thm.prop_of eq_algrho;
val friend = mk_ctr fp_argTs friend0;
val goal = mk_cong_intro_ctr_or_friend_goal ctxt fpT Rcong friend;
in
Variable.add_free_names ctxt goal []
|> (fn vars => Goal.prove_sorry ctxt vars [] goal (fn {context = ctxt, prems = _} =>
mk_cong_intro_ctr_or_friend_tac ctxt eq_algrho [] cong_algrho_intro))
|> Thm.close_derivation \<^here>
end;
fun derive_cong_intros lthy ctr_names friend_names
({cong_base, cong_refl, cong_sym, cong_trans, cong_alg_intros, ...} : dtor_coinduct_info) =
let
val cong_ctor_intro :: cong_algrho_intros = rev cong_alg_intros;
val names = map (prefix cong_N) ([baseN, reflN, symN, transN] @ ctr_names @ friend_names);
val thms = [cong_base, cong_refl, cong_sym, cong_trans] @
derive_cong_ctr_intros lthy cong_ctor_intro @
map (derive_cong_friend_intro lthy) cong_algrho_intros;
in
names ~~ thms
end;
fun derive_coinduct ctxt (fpT as Type (fpT_name, fpT_args)) dtor_coinduct =
let
val thy = Proof_Context.theory_of ctxt;
val \<^const>\<open>Pure.imp\<close> $ (\<^const>\<open>Trueprop\<close> $ (_ $ Abs (_, _, _ $
Abs (_, _, \<^const>\<open>implies\<close> $ _ $ (_ $ (cong0 $ _) $ _ $ _))))) $ _ =
Thm.prop_of dtor_coinduct;
val SOME {X as TVar ((X_s, _), _), fp_res = {dtor_ctors, ...}, pre_bnf,
absT_info = {abs_inverse, ...}, live_nesting_bnfs,
fp_ctr_sugar = {ctrXs_Tss, ctr_defs,
ctr_sugar = ctr_sugar0 as {T = Type (_, T0_args), ctrs = ctrs0, discs = discs0, ...},
...}, ...} =
fp_sugar_of ctxt fpT_name;
val n = length ctrXs_Tss;
val ms = map length ctrXs_Tss;
val X' = TVar ((X_s, maxidx_of_typ fpT + 1), \<^sort>\type\);
val As_rho = tvar_subst thy T0_args fpT_args;
val substXAT = Term.typ_subst_TVars As_rho o Tsubst X X';
val substXA = Term.subst_TVars As_rho o substT X X';
val phi = Morphism.typ_morphism "BNF" substXAT $> Morphism.term_morphism "BNF" substXA;
fun mk_applied_cong arg =
enforce_type ctxt domain_type (fastype_of arg) cong0 $ arg;
val thm = derive_coinduct_thms_for_types ctxt false mk_applied_cong [pre_bnf] dtor_coinduct
dtor_ctors live_nesting_bnfs [fpT] [substXAT X] [map (map substXAT) ctrXs_Tss] [n]
[abs_inverse] [abs_inverse] I [ctr_defs] [morph_ctr_sugar phi ctr_sugar0]
|> map snd |> the_single;
val (attrs, _) = mk_coinduct_attrs [fpT] [ctrs0] [discs0] [ms];
in
(thm, attrs)
end;
type explore_parameters =
{bound_Us: typ list,
bound_Ts: typ list,
U: typ,
T: typ};
fun update_UT {bound_Us, bound_Ts, ...} U T =
{bound_Us = bound_Us, bound_Ts = bound_Ts, U = U, T = T};
fun explore_nested lthy explore {bound_Us, bound_Ts, U, T} t =
let
fun build_simple (T, U) =
if T = U then
\<^term>\<open>%y. y\<close>
else
Bound 0
|> explore {bound_Us = T :: bound_Us, bound_Ts = T :: bound_Ts, U = U, T = T}
|> (fn t => Abs (Name.uu, T, t));
in
betapply (build_map lthy [] [] build_simple (T, U), t)
end;
fun add_boundvar t = betapply (incr_boundvars 1 t, Bound 0);
fun explore_fun (arg_U :: arg_Us) explore {bound_Us, bound_Ts, U, T} t =
let val arg_name = the_default Name.uu (try (fn (Abs (s, _, _)) => s) t) in
add_boundvar t
|> explore_fun arg_Us explore
{bound_Us = arg_U :: bound_Us, bound_Ts = domain_type T :: bound_Ts, U = range_type U,
T = range_type T}
|> (fn t => Abs (arg_name, arg_U, t))
end
| explore_fun [] explore params t = explore params t;
fun massage_fun explore (params as {T, U, ...}) =
if can dest_funT T then explore_fun [domain_type U] explore params else explore params;
fun massage_star massages explore =
let
fun after_massage massages' t params t' =
if t aconv t' then massage_any massages' params t else massage_any massages params t'
and massage_any [] params t = explore params t
| massage_any (massage :: massages') params t =
massage (after_massage massages' t) params t;
in
massage_any massages
end;
fun massage_let explore params t =
(case strip_comb t of
(Const (\<^const_name>\<open>Let\<close>, _), [_, _]) => unfold_lets_splits t
| _ => t)
|> explore params;
fun check_corec_equation ctxt fun_frees (lhs, rhs) =
let
val (fun_t, arg_ts) = strip_comb lhs;
fun check_fun_name () =
null fun_frees orelse member (op aconv) fun_frees fun_t orelse
ill_formed_equation_head ctxt [] fun_t;
fun check_no_other_frees () =
(case Term.add_frees rhs [] |> map Free |> subtract (op =) (fun_frees @ arg_ts)
|> find_first (not o Variable.is_fixed ctxt o fst o dest_Free) of
NONE => ()
| SOME t => extra_variable_in_rhs ctxt [] t);
in
check_duplicate_variables_in_lhs ctxt [] arg_ts;
check_fun_name ();
check_all_fun_arg_frees ctxt [] (filter_out is_Var arg_ts);
check_no_other_frees ()
end;
fun parse_corec_equation ctxt fun_frees eq =
let
val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop (drop_all eq))
handle TERM _ => ill_formed_equation_lhs_rhs ctxt [eq];
val _ = check_corec_equation ctxt fun_frees (lhs, rhs);
val (fun_t, arg_ts) = strip_comb lhs;
val (arg_Ts, _) = strip_type (fastype_of fun_t);
val added_Ts = drop (length arg_ts) arg_Ts;
val free_names = mk_names (length added_Ts) "x" ~~ added_Ts;
val free_args = Variable.variant_frees ctxt [rhs, lhs] free_names |> map Free;
in
(arg_ts @ free_args, list_comb (rhs, free_args))
end;
fun morph_views phi (code, ctrs, discs, disc_iffs, sels) =
(Morphism.term phi code, map (Morphism.term phi) ctrs, map (Morphism.term phi) discs,
map (Morphism.term phi) disc_iffs, map (Morphism.term phi) sels);
fun generate_views ctxt eq fun_t (lhs_free_args, rhs) =
let
val lhs = list_comb (fun_t, lhs_free_args);
val T as Type (T_name, Ts) = fastype_of rhs;
val SOME {fp_ctr_sugar = {ctr_sugar = {ctrs = ctrs0, discs = discs0, selss = selss0, ...}, ...},
...} =
fp_sugar_of ctxt T_name;
val ctrs = map (mk_ctr Ts) ctrs0;
val discs = map (mk_disc_or_sel Ts) discs0;
val selss = map (map (mk_disc_or_sel Ts)) selss0;
val code_view = drop_all eq;
fun can_case_expand t = not (can (dest_ctr ctxt T_name) t);
fun generate_raw_views conds t raw_views =
let
fun analyse (ctr :: ctrs) (disc :: discs) ctr' =
if ctr = ctr' then
(conds, disc, ctr)
else
analyse ctrs discs ctr';
in
(analyse ctrs discs (fst (strip_comb t))) :: raw_views
end;
fun generate_disc_views raw_views =
if length discs = 1 then
([], [])
else
let
fun collect_condss_disc condss [] _ = condss
| collect_condss_disc condss ((conds, disc', _) :: raw_views) disc =
collect_condss_disc (condss |> disc = disc' ? cons conds) raw_views disc;
val grouped_disc_views = discs
|> map (collect_condss_disc [] raw_views)
|> curry (op ~~) (map (fn disc => disc $ lhs) discs);
fun mk_disc_iff_props props [] = props
| mk_disc_iff_props _ ((lhs, \<^const>\<open>HOL.True\<close>) :: _) = [lhs]
| mk_disc_iff_props props ((lhs, rhs) :: views) =
mk_disc_iff_props ((HOLogic.mk_eq (lhs, rhs)) :: props) views;
in
(grouped_disc_views
|> map swap,
grouped_disc_views
|> map (apsnd (s_dnf #> mk_conjs))
|> mk_disc_iff_props []
|> map (fn eq => ([[]], eq)))
end;
fun generate_ctr_views raw_views =
let
fun collect_condss_ctr condss [] _ = condss
| collect_condss_ctr condss ((conds, _, ctr') :: raw_views) ctr =
collect_condss_ctr (condss |> ctr = ctr' ? cons conds) raw_views ctr;
fun mk_ctr_eq ctr_sels ctr =
let
fun extract_arg n sel _(*bound_Ts*) fun_t arg_ts =
if ctr = fun_t then
nth arg_ts n
else
let val t = list_comb (fun_t, arg_ts) in
if can_case_expand t then
sel $ t
else
Term.dummy_pattern (range_type (fastype_of sel))
end;
in
ctr_sels
|> map_index (uncurry extract_arg)
|> map (fn extract => massage_corec_code_rhs ctxt extract [] rhs)
|> curry list_comb ctr
|> curry HOLogic.mk_eq lhs
end;
fun remove_condss_if_alone [(_, concl)] = [([[]], concl)]
| remove_condss_if_alone views = views;
in
ctrs
|> `(map (collect_condss_ctr [] raw_views))
||> map2 mk_ctr_eq selss
|> op ~~
|> filter_out (null o fst)
|> remove_condss_if_alone
end;
fun generate_sel_views raw_views only_one_ctr =
let
fun mk_sel_positions sel =
let
fun get_sel_position _ [] = NONE
| get_sel_position i (sel' :: sels) =
if sel = sel' then SOME i else get_sel_position (i + 1) sels;
in
ctrs ~~ map (get_sel_position 0) selss
|> map_filter (fn (ctr, pos_opt) =>
if is_some pos_opt then SOME (ctr, the pos_opt) else NONE)
end;
fun collect_sel_condss0 condss [] _ = condss
| collect_sel_condss0 condss ((conds, _, ctr) :: raw_views) sel_positions =
let val condss' = condss |> is_some (AList.lookup (op =) sel_positions ctr) ? cons conds
in
collect_sel_condss0 condss' raw_views sel_positions
end;
val collect_sel_condss =
if only_one_ctr then K [[]] else collect_sel_condss0 [] raw_views;
fun mk_sel_rhs sel_positions sel =
let
val sel_T = range_type (fastype_of sel);
fun extract_sel_value _(*bound_Ts*) fun_t arg_ts =
(case AList.lookup (op =) sel_positions fun_t of
SOME n => nth arg_ts n
| NONE =>
let val t = list_comb (fun_t, arg_ts) in
if can_case_expand t then
sel $ t
else
Term.dummy_pattern sel_T
end);
in
massage_corec_code_rhs ctxt extract_sel_value [] rhs
end;
val ordered_sels = distinct (op =) (flat selss);
val sel_positionss = map mk_sel_positions ordered_sels;
val sel_rhss = map2 mk_sel_rhs sel_positionss ordered_sels;
val sel_lhss = map (rapp lhs o mk_disc_or_sel Ts) ordered_sels;
val sel_condss = map collect_sel_condss sel_positionss;
fun is_undefined (Const (\<^const_name>\<open>undefined\<close>, _)) = true
| is_undefined _ = false;
in
sel_condss ~~ (sel_lhss ~~ sel_rhss)
|> filter_out (is_undefined o snd o snd)
|> map (apsnd HOLogic.mk_eq)
end;
fun mk_atomic_prop fun_args (condss, concl) =
(Logic.list_all (map dest_Free fun_args, abstract_over_list fun_args
(Logic.list_implies (map HOLogic.mk_Trueprop (s_dnf condss), HOLogic.mk_Trueprop concl))));
val raw_views = rhs
|> massage_let_if_case ctxt (K false) (fn _(*bound_Ts*) => fn t => t
|> can_case_expand t ? expand_to_ctr_term ctxt T) (K (K ())) (K I) []
|> (fn expanded_rhs => fold_rev_let_if_case ctxt generate_raw_views [] expanded_rhs [])
|> rev;
val (disc_views, disc_iff_views) = generate_disc_views raw_views;
val ctr_views = generate_ctr_views raw_views;
val sel_views = generate_sel_views raw_views (length ctr_views = 1);
val mk_props = filter_out (null o fst) #> map (mk_atomic_prop lhs_free_args);
in
(code_view, mk_props ctr_views, mk_props disc_views, mk_props disc_iff_views,
mk_props sel_views)
end;
fun find_all_associated_types [] _ = []
| find_all_associated_types ((Type (_, Ts1), Type (_, Ts2)) :: TTs) T =
find_all_associated_types ((Ts1 ~~ Ts2) @ TTs) T
| find_all_associated_types ((T1, T2) :: TTs) T =
find_all_associated_types TTs T |> T1 = T ? cons T2;
fun as_member_of tab = try dest_Const #> Option.mapPartial (fst #> Symtab.lookup tab);
fun extract_rho_from_equation
({ctr_guards, inner_buffer = {Oper, VLeaf, CLeaf, ctr_wrapper, friends}, ...},
{pattern_ctrs, discs, sels, it, mk_case})
b version Y preT ssig_T friend_tm (lhs_args, rhs) lthy =
let
val thy = Proof_Context.theory_of lthy;
val res_T = fastype_of rhs;
val YpreT = HOLogic.mk_prodT (Y, preT);
fun fpT_to new_T T =
if T = res_T then
new_T
else
(case T of
Type (s, Ts) => Type (s, map (fpT_to new_T) Ts)
| _ => T);
fun build_params bound_Us bound_Ts T =
{bound_Us = bound_Us, bound_Ts = bound_Ts, U = T, T = T};
fun typ_before explore {bound_Us, bound_Ts, ...} t =
explore (build_params bound_Us bound_Ts (fastype_of1 (bound_Ts, t))) t;
val is_self_call = curry (op aconv) friend_tm;
val has_self_call = Term.exists_subterm is_self_call;
fun has_res_T bound_Ts t = fastype_of1 (bound_Ts, t) = res_T;
fun contains_res_T (Type (s, Ts)) = s = fst (dest_Type res_T) orelse exists contains_res_T Ts
| contains_res_T _ = false;
val is_lhs_arg = member (op =) lhs_args;
fun is_constant t =
not (Term.exists_subterm is_lhs_arg t orelse has_self_call t orelse loose_bvar (t, 0));
fun is_nested_type T = T <> res_T andalso T <> YpreT andalso T <> ssig_T;
val is_valid_case_argumentT = not o member (op =) [Y, ssig_T];
fun is_same_type_constr (Type (s, _)) (Type (s', _)) = (s = s')
| is_same_type_constr _ _ = false;
exception NO_ENCAPSULATION of unit;
val parametric_consts = Unsynchronized.ref [];
(* We are assuming that set functions are marked with "[transfer_rule]" (cf. the "transfer"
plugin). Otherwise, the "eq_algrho" tactic might fail. *)
fun is_special_parametric_const (x as (s, _)) =
s = \<^const_name>\<open>id\<close> orelse is_set lthy x;
fun add_parametric_const s general_T T U =
let
fun tupleT_of_funT T =
let val (Ts, T) = strip_type T in
mk_tupleT_balanced (Ts @ [T])
end;
fun funT_of_tupleT n =
dest_tupleT_balanced (n + 1)
#> split_last
#> op --->;
val m = num_binder_types general_T;
val param1_T = Type_Infer.paramify_vars general_T;
val param2_T = Type_Infer.paramify_vars param1_T;
val deadfixed_T =
build_map lthy [] [] (mk_undefined o op -->) (apply2 tupleT_of_funT (param1_T, param2_T))
|> singleton (Type_Infer_Context.infer_types lthy)
|> singleton (Type_Infer.fixate lthy false)
|> type_of
|> dest_funT
|-> generalize_types 1
|> funT_of_tupleT m;
val j = maxidx_of_typ deadfixed_T + 1;
fun varifyT (Type (s, Ts)) = Type (s, map varifyT Ts)
| varifyT (TFree (s, T)) = TVar ((s, j), T)
| varifyT T = T;
val dedvarified_T = varifyT deadfixed_T;
val new_vars = Sign.typ_match thy (dedvarified_T, T) Vartab.empty
|> Vartab.dest
|> filter (curry (op =) j o snd o fst)
|> Vartab.make;
val deadinstantiated_T = map_atyps (Type.devar new_vars) dedvarified_T;
val final_T =
if Sign.typ_instance thy (U, deadinstantiated_T) then deadfixed_T else general_T;
in
parametric_consts := insert (op =) (s, final_T) (!parametric_consts)
end;
fun encapsulate (params as {U, T, ...}) t =
if U = T then
t
else if T = Y then
VLeaf $ t
else if T = res_T then
CLeaf $ t
else if T = YpreT then
it $ t
else if is_nested_type T andalso is_same_type_constr T U then
explore_nested lthy encapsulate params t
else
raise NO_ENCAPSULATION ();
fun build_function_after_encapsulation fun_t fun_t' (params as {bound_Us, ...}) arg_ts arg_ts' =
let
val arg_Us' = fst (strip_typeN (length arg_ts) (fastype_of1 (bound_Us, fun_t')));
fun the_or_error arg NONE =
error ("Illegal argument " ^ quote (Syntax.string_of_term lthy arg) ^
" to " ^ quote (Syntax.string_of_term lthy fun_t))
| the_or_error _ (SOME arg') = arg';
in
arg_ts'
|> `(map (curry fastype_of1 bound_Us))
|>> map2 (update_UT params) arg_Us'
|> op ~~
|> map (try (uncurry encapsulate))
|> map2 the_or_error arg_ts
|> curry list_comb fun_t'
end;
fun rebuild_function_after_exploration old_fn new_fn explore params arg_ts =
arg_ts
|> map (typ_before explore params)
|> build_function_after_encapsulation old_fn new_fn params arg_ts;
fun update_case Us U casex =
let
val Type (T_name, _) = domain_type (snd (strip_fun_type (fastype_of casex)));
val SOME {fp_ctr_sugar = {ctr_sugar = {T = Type (_, Ts), casex, ...}, ...}, ...} =
fp_sugar_of lthy T_name;
val T = body_type (fastype_of casex);
in
Term.subst_atomic_types ((T :: Ts) ~~ (U :: Us)) casex
end;
fun deduce_according_type default_T [] = default_T
| deduce_according_type default_T Ts = (case distinct (op =) Ts of
U :: [] => U
| _ => fpT_to ssig_T default_T);
fun massage_if explore_cond explore (params as {bound_Us, bound_Ts, ...}) t =
(case strip_comb t of
(const as Const (\<^const_name>\<open>If\<close>, _), obj :: (branches as [_, _])) =>
(case List.partition Term.is_dummy_pattern (map (explore params) branches) of
(dummy_branch' :: _, []) => dummy_branch'
| (_, [branch']) => branch'
| (_, branches') =>
let
val brancheUs = map (curry fastype_of1 bound_Us) branches';
val U = deduce_according_type (fastype_of1 (bound_Ts, hd branches)) brancheUs;
val const_obj' = (If_const U, obj)
||> explore_cond (update_UT params \<^typ>\<open>bool\<close> \<^typ>\<open>bool\<close>)
|> op $;
in
build_function_after_encapsulation (const $ obj) const_obj' params branches branches'
end)
| _ => explore params t);
fun massage_map explore (params as {bound_Us, bound_Ts, T = Type (T_name, Ts), ...})
(t as func $ mapped_arg) =
if is_self_call (head_of func) then
explore params t
else
(case try (dest_map lthy T_name) func of
SOME (map_tm, fs) =>
let
val n = length fs;
val mapped_arg' = mapped_arg
|> `(curry fastype_of1 bound_Ts)
|>> build_params bound_Us bound_Ts
|-> explore;
in
(case fastype_of1 (bound_Us, mapped_arg') of
Type (U_name, Us0) =>
if U_name = T_name then
let
val Us = map (fpT_to ssig_T) Us0;
val temporary_map = map_tm
|> mk_map n Us Ts;
val map_fn_Ts = fastype_of #> strip_fun_type #> fst;
val binder_Uss = map_fn_Ts temporary_map
|> map (map (fpT_to ssig_T) o binder_types);
val fun_paramss = map_fn_Ts (head_of func)
|> map (build_params bound_Us bound_Ts);
val fs' = fs
|> @{map 4} explore_fun binder_Uss (replicate n explore) fun_paramss;
val SOME bnf = bnf_of lthy T_name;
val Type (_, bnf_Ts) = T_of_bnf bnf;
val typ_alist =
lives_of_bnf bnf ~~ map (curry fastype_of1 bound_Us #> range_type) fs';
val Us' = map2 the_default Us (map (AList.lookup (op =) typ_alist) bnf_Ts);
val map_tm' = map_tm |> mk_map n Us Us';
in
build_function_after_encapsulation func (list_comb (map_tm', fs')) params
[mapped_arg] [mapped_arg']
end
else
explore params t
| _ => explore params t)
end
| NONE => explore params t)
| massage_map explore params t = explore params t;
fun massage_comp explore (params as {bound_Us, ...}) t =
(case strip_comb t of
(Const (\<^const_name>\<open>comp\<close>, _), f1 :: f2 :: args) =>
let
val args' = map (typ_before explore params) args;
val f2' = typ_before (explore_fun (map (curry fastype_of1 bound_Us) args') explore) params
f2;
val f1' = typ_before (explore_fun [range_type (fastype_of1 (bound_Us, f2'))] explore)
params f1;
in
betapply (f1', list_comb (f2', args'))
end
| _ => explore params t);
fun massage_ctr explore (params as {T = T as Type (s, Ts), bound_Us, ...}) t =
if T <> res_T then
(case try (dest_ctr lthy s) t of
SOME (ctr, args) =>
let
val args' = map (typ_before explore params) args;
val SOME {T = Type (_, ctr_Ts), ...} = ctr_sugar_of lthy s;
val temp_ctr = mk_ctr ctr_Ts ctr;
val argUs = map (curry fastype_of1 bound_Us) args';
val typ_alist = binder_types (fastype_of temp_ctr) ~~ argUs;
val Us = ctr_Ts
|> map (find_all_associated_types typ_alist)
|> map2 deduce_according_type Ts;
val ctr' = mk_ctr Us ctr;
in
build_function_after_encapsulation ctr ctr' params args args'
end
| NONE => explore params t)
else
explore params t
| massage_ctr explore params t = explore params t;
fun const_of [] _ = NONE
| const_of ((sel as Const (s1, _)) :: r) (const as Const (s2, _)) =
if s1 = s2 then SOME sel else const_of r const
| const_of _ _ = NONE;
fun massage_disc explore (params as {T, bound_Us, bound_Ts, ...}) t =
(case (strip_comb t, T = \<^typ>\<open>bool\<close>) of
((fun_t, arg :: []), true) =>
let val arg_T = fastype_of1 (bound_Ts, arg) in
if arg_T <> res_T then
(case arg_T |> try (fst o dest_Type) |> Option.mapPartial (ctr_sugar_of lthy) of
SOME {discs, T = Type (_, Ts), ...} =>
(case const_of discs fun_t of
SOME disc =>
let
val arg' = arg |> typ_before explore params;
val Type (_, Us) = fastype_of1 (bound_Us, arg');
val disc' = disc |> Term.subst_TVars (map (fst o dest_TVar) Ts ~~ Us);
in
disc' $ arg'
end
| NONE => explore params t)
| NONE => explore params t)
else
explore params t
end
| _ => explore params t);
fun massage_sel explore (params as {bound_Us, bound_Ts, ...}) t =
let val (fun_t, args) = strip_comb t in
if args = [] then
explore params t
else
let val T = fastype_of1 (bound_Ts, hd args) in
(case (Option.mapPartial (ctr_sugar_of lthy) (try (fst o dest_Type) T), T <> res_T) of
(SOME {selss, T = Type (_, Ts), ...}, true) =>
(case const_of (flat selss) fun_t of
SOME sel =>
let
val args' = args |> map (typ_before explore params);
val Type (_, Us) = fastype_of1 (bound_Us, hd args');
val sel' = sel |> Term.subst_TVars (map (fst o dest_TVar) Ts ~~ Us);
in
build_function_after_encapsulation sel sel' params args args'
end
| NONE => explore params t)
| _ => explore params t)
end
end;
fun massage_equality explore (params as {bound_Us, bound_Ts, ...})
(t as Const (\<^const_name>\<open>HOL.eq\<close>, _) $ t1 $ t2) =
let
val check_is_VLeaf =
not o (Term.exists_subterm (fn t => t aconv CLeaf orelse t aconv Oper));
fun try_pattern_matching (fun_t, arg_ts) t =
(case as_member_of pattern_ctrs fun_t of
SOME (disc, sels) =>
let val t' = typ_before explore params t in
if fastype_of1 (bound_Us, t') = YpreT then
let
val arg_ts' = map (typ_before explore params) arg_ts;
val sels_t' = map (fn sel => betapply (sel, t')) sels;
val Ts = map (curry fastype_of1 bound_Us) arg_ts';
val Us = map (curry fastype_of1 bound_Us) sels_t';
val arg_ts' = map2 encapsulate (map2 (update_UT params) Us Ts) arg_ts';
in
if forall check_is_VLeaf arg_ts' then
SOME (Library.foldl1 HOLogic.mk_conj
(betapply (disc, t') :: (map HOLogic.mk_eq (arg_ts' ~~ sels_t'))))
else
NONE
end
else
NONE
end
| NONE => NONE);
in
(case try_pattern_matching (strip_comb t1) t2 of
SOME cond => cond
| NONE => (case try_pattern_matching (strip_comb t2) t1 of
SOME cond => cond
| NONE =>
let
val T = fastype_of1 (bound_Ts, t1);
val params' = build_params bound_Us bound_Ts T;
val t1' = explore params' t1;
val t2' = explore params' t2;
in
if fastype_of1 (bound_Us, t1') = T andalso fastype_of1 (bound_Us, t2') = T then
HOLogic.mk_eq (t1', t2')
else
error ("Unsupported condition: " ^ quote (Syntax.string_of_term lthy t))
end))
end
| massage_equality explore params t = explore params t;
fun infer_types (TVar _) (TVar _) = []
| infer_types (U as TVar _) T = [(U, T)]
| infer_types (Type (s', Us)) (Type (s, Ts)) =
if s' = s then flat (map2 infer_types Us Ts) else []
| infer_types _ _ = [];
fun group_by_fst associations [] = associations
| group_by_fst associations ((a, b) :: r) = group_by_fst (add_association a b associations) r
and add_association a b [] = [(a, [b])]
| add_association a b ((c, d) :: r) =
if a = c then (c, b :: d) :: r
else (c, d) :: (add_association a b r);
fun new_TVar known_TVars =
Name.invent_list (map (fst o fst o dest_TVar) known_TVars) "x" 1
|> (fn [s] => TVar ((s, 0), []));
fun instantiate_type inferred_types =
Term.typ_subst_TVars (map (apfst (fst o dest_TVar)) inferred_types);
fun chose_unknown_TVar (T as TVar _) = SOME T
| chose_unknown_TVar (Type (_, Ts)) =
fold (curry merge_options) (map chose_unknown_TVar Ts) NONE
| chose_unknown_TVar _ = NONE;
(* The function under definition might not be defined yet when this is queried. *)
fun maybe_const_type ctxt (s, T) =
Sign.const_type (Proof_Context.theory_of ctxt) s |> the_default T;
fun massage_const polymorphic explore (params as {bound_Us, ...}) t =
let val (fun_t, arg_ts) = strip_comb t in
(case fun_t of
Const (fun_x as (s, fun_T)) =>
let val general_T = if polymorphic then maybe_const_type lthy fun_x else fun_T in
if fun_t aconv friend_tm orelse contains_res_T (body_type general_T) orelse
is_constant t then
explore params t
else
let
val inferred_types = infer_types general_T fun_T;
fun prepare_skeleton [] _ = []
| prepare_skeleton ((T, U) :: inferred_types) As =
let
fun schematize_res_T U As =
if U = res_T then
let val A = new_TVar As in
(A, A :: As)
end
else
(case U of
Type (s, Us) => fold_map schematize_res_T Us As |>> curry Type s
| _ => (U, As));
val (U', As') = schematize_res_T U As;
in
(T, U') :: (prepare_skeleton inferred_types As')
end;
val inferred_types' = prepare_skeleton inferred_types (map fst inferred_types);
val skeleton_T = instantiate_type inferred_types' general_T;
fun explore_if_possible (exp_arg as (_, true)) _ = exp_arg
| explore_if_possible (exp_arg as (arg, false)) arg_T =
if exists (exists_subtype is_TVar) (binder_types arg_T) then exp_arg
else (typ_before (explore_fun (binder_types arg_T) explore) params arg, true);
fun collect_inferred_types [] _ = []
| collect_inferred_types ((arg, explored) :: exp_arg_ts) (arg_T :: arg_Ts) =
(if explored then infer_types arg_T (fastype_of1 (bound_Us, arg)) else []) @
collect_inferred_types exp_arg_ts arg_Ts;
fun propagate exp_arg_ts skeleton_T =
let
val arg_gen_Ts = binder_types skeleton_T;
val exp_arg_ts = map2 explore_if_possible exp_arg_ts arg_gen_Ts;
val inferred_types = collect_inferred_types exp_arg_ts arg_gen_Ts
|> group_by_fst []
|> map (apsnd (deduce_according_type ssig_T));
in
(exp_arg_ts, instantiate_type inferred_types skeleton_T)
end;
val remaining_to_be_explored = filter_out snd #> length;
fun try_exploring_args exp_arg_ts skeleton_T =
let
val n = remaining_to_be_explored exp_arg_ts;
val (exp_arg_ts', skeleton_T') = propagate exp_arg_ts skeleton_T;
val n' = remaining_to_be_explored exp_arg_ts';
fun try_instantiating A T =
try (try_exploring_args exp_arg_ts') (instantiate_type [(A, T)] skeleton_T');
in
if n' = 0 then
SOME (exp_arg_ts', skeleton_T')
else if n = n' then
if exists_subtype is_TVar skeleton_T' then
let val SOME A = chose_unknown_TVar skeleton_T' in
(case try_instantiating A ssig_T of
SOME result => result
| NONE => (case try_instantiating A YpreT of
SOME result => result
| NONE => (case try_instantiating A res_T of
SOME result => result
| NONE => NONE)))
end
else
NONE
else
try_exploring_args exp_arg_ts' skeleton_T'
end;
in
(case try_exploring_args (map (fn arg => (arg, false)) arg_ts) skeleton_T of
SOME (exp_arg_ts, fun_U) =>
let
val arg_ts' = map fst exp_arg_ts;
val fun_t' = Const (s, fun_U);
fun finish_off () =
let
val t' =
build_function_after_encapsulation fun_t fun_t' params arg_ts arg_ts';
in
if can type_of1 (bound_Us, t') then
(if fun_T = fun_U orelse is_special_parametric_const (s, fun_T) then ()
else add_parametric_const s general_T fun_T fun_U;
t')
else
explore params t
end;
in
if polymorphic then
finish_off ()
else
(case try finish_off () of
SOME t' => t'
| NONE => explore params t)
end
| NONE => explore params t)
end
end
| _ => explore params t)
end;
fun massage_rho explore =
massage_star [massage_let, massage_if explore_cond, massage_case, massage_fun, massage_comp,
massage_map, massage_ctr, massage_sel, massage_disc, massage_equality,
massage_const false, massage_const true]
explore
and massage_case explore (params as {bound_Ts, bound_Us, ...}) t =
(case strip_comb t of
(casex as Const (case_x as (c, _)), args as _ :: _ :: _) =>
(case try strip_fun_type (maybe_const_type lthy case_x) of
SOME (gen_branch_Ts, gen_body_fun_T) =>
let
val gen_branch_ms = map num_binder_types gen_branch_Ts;
val n = length gen_branch_ms;
val (branches, obj_leftovers) = chop n args;
in
if n < length args then
(case gen_body_fun_T of
Type (_, [Type (T_name, _), _]) =>
if case_of lthy T_name = SOME (c, true) then
let
val brancheTs = binder_fun_types (fastype_of1 (bound_Ts, casex));
val obj_leftover_Ts = map (curry fastype_of1 bound_Ts) obj_leftovers;
val obj_leftovers' =
if is_constant (hd obj_leftovers) then
obj_leftovers
else
(obj_leftover_Ts, obj_leftovers)
|>> map (build_params bound_Us bound_Ts)
|> op ~~
|> map (uncurry explore_inner);
val obj_leftoverUs = obj_leftovers' |> map (curry fastype_of1 bound_Us);
val _ = is_valid_case_argumentT (hd obj_leftoverUs) orelse
error (quote (Syntax.string_of_term lthy (hd obj_leftovers)) ^
" is not a valid case argument");
val Us = obj_leftoverUs |> hd |> dest_Type |> snd;
val branche_binderUss =
(if hd obj_leftoverUs = YpreT then mk_case HOLogic.boolT
else update_case Us HOLogic.boolT casex)
|> fastype_of
|> binder_fun_types
|> map binder_types;
val b_params = map (build_params bound_Us bound_Ts) brancheTs;
val branches' = branches
|> @{map 4} explore_fun branche_binderUss (replicate n explore) b_params;
val brancheUs = map (curry fastype_of1 bound_Us) branches';
val U = deduce_according_type (body_type (hd brancheTs))
(map body_type brancheUs);
val casex' =
if hd obj_leftoverUs = YpreT then mk_case U else update_case Us U casex;
in
build_function_after_encapsulation casex casex' params
(branches @ obj_leftovers) (branches' @ obj_leftovers')
end
else
explore params t
| _ => explore params t)
else
explore params t
end
| NONE => explore params t)
| _ => explore params t)
and explore_cond params t =
if has_self_call t then unexpected_rec_call_in lthy [] t else explore_inner params t
and explore_inner params t =
massage_rho explore_inner_general params t
and explore_inner_general (params as {bound_Us, bound_Ts, T, ...}) t =
let val (fun_t, arg_ts) = strip_comb t in
if is_constant t then
t
else
(case (as_member_of discs fun_t,
length arg_ts = 1 andalso has_res_T bound_Ts (the_single arg_ts)) of
(SOME disc', true) =>
let
val arg' = explore_inner params (the_single arg_ts);
val arg_U = fastype_of1 (bound_Us, arg');
in
if arg_U = res_T then
fun_t $ arg'
else if arg_U = YpreT then
disc' $ arg'
else
error ("Discriminator " ^ quote (Syntax.string_of_term lthy fun_t) ^
" cannot be applied to non-variable " ^
quote (Syntax.string_of_term lthy (hd arg_ts)))
end
| _ =>
(case as_member_of sels fun_t of
SOME sel' =>
let
val arg_ts' = map (explore_inner params) arg_ts;
val arg_U = fastype_of1 (bound_Us, hd arg_ts');
in
if arg_U = res_T then
build_function_after_encapsulation fun_t fun_t params arg_ts arg_ts'
else if arg_U = YpreT then
build_function_after_encapsulation fun_t sel' params arg_ts arg_ts'
else
error ("Selector " ^ quote (Syntax.string_of_term lthy fun_t) ^
" cannot be applied to non-variable " ^
quote (Syntax.string_of_term lthy (hd arg_ts)))
end
| NONE =>
(case as_member_of friends fun_t of
SOME (_, friend') =>
rebuild_function_after_exploration fun_t friend' explore_inner params arg_ts
|> curry (op $) Oper
| NONE =>
(case as_member_of ctr_guards fun_t of
SOME ctr_guard' =>
rebuild_function_after_exploration fun_t ctr_guard' explore_inner params arg_ts
|> curry (op $) ctr_wrapper
|> curry (op $) Oper
| NONE =>
if is_Bound fun_t then
rebuild_function_after_exploration fun_t fun_t explore_inner params arg_ts
else if is_Free fun_t then
let val fun_t' = map_types (fpT_to YpreT) fun_t in
rebuild_function_after_exploration fun_t fun_t' explore_inner params arg_ts
end
else if T = res_T then
error (quote (Syntax.string_of_term lthy fun_t) ^
" not polymorphic enough to be applied like this and no friend")
else
error (quote (Syntax.string_of_term lthy fun_t) ^
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.31 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|