/*
* Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "code/nmethod.hpp"
#include "gc/g1/g1Allocator.inline.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ConcurrentMarkThread.hpp"
#include "gc/g1/g1HeapVerifier.hpp"
#include "gc/g1/g1Policy.hpp"
#include "gc/g1/g1RemSet.hpp"
#include "gc/g1/g1RootProcessor.hpp"
#include "gc/g1/heapRegion.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/shared/tlab_globals.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/iterator.inline.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/access.inline.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
int G1HeapVerifier::_enabled_verification_types = G1HeapVerifier::G1VerifyAll;
class VerifyRootsClosure: public OopClosure {
private:
G1CollectedHeap* _g1h;
VerifyOption _vo;
bool _failures;
public:
VerifyRootsClosure(VerifyOption vo) :
_g1h(G1CollectedHeap::heap()),
_vo(vo),
_failures(false) { }
bool failures() { return _failures; }
template <class T> void do_oop_work(T* p) {
T heap_oop = RawAccess<>::oop_load(p);
if (!CompressedOops::is_null(heap_oop)) {
oop obj = CompressedOops::decode_not_null(heap_oop);
if (_g1h->is_obj_dead_cond(obj, _vo)) {
Log(gc, verify) log;
log.error("Root location " PTR_FORMAT " points to dead obj " PTR_FORMAT " in region " HR_FORMAT,
p2i(p), p2i(obj), HR_FORMAT_PARAMS(_g1h->heap_region_containing(obj)));
ResourceMark rm;
LogStream ls(log.error());
obj->print_on(&ls);
_failures = true;
}
}
}
void do_oop(oop* p) { do_oop_work(p); }
void do_oop(narrowOop* p) { do_oop_work(p); }
};
class G1VerifyCodeRootOopClosure: public OopClosure {
G1CollectedHeap* _g1h;
OopClosure* _root_cl;
nmethod* _nm;
VerifyOption _vo;
bool _failures;
template <class T> void do_oop_work(T* p) {
// First verify that this root is live
_root_cl->do_oop(p);
if (!G1VerifyHeapRegionCodeRoots) {
// We're not verifying the code roots attached to heap region.
return;
}
// Don't check the code roots during marking verification in a full GC
if (_vo == VerifyOption::G1UseFullMarking) {
return;
}
// Now verify that the current nmethod (which contains p) is
// in the code root list of the heap region containing the
// object referenced by p.
T heap_oop = RawAccess<>::oop_load(p);
if (!CompressedOops::is_null(heap_oop)) {
oop obj = CompressedOops::decode_not_null(heap_oop);
// Now fetch the region containing the object
HeapRegion* hr = _g1h->heap_region_containing(obj);
HeapRegionRemSet* hrrs = hr->rem_set();
// Verify that the code root list for this region
// contains the nmethod
if (!hrrs->code_roots_list_contains(_nm)) {
log_error(gc, verify)("Code root location " PTR_FORMAT " "
"from nmethod " PTR_FORMAT " not in strong "
"code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
_failures = true;
}
}
}
public:
G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
_g1h(g1h), _root_cl(root_cl), _nm(NULL), _vo(vo), _failures(false) {}
void do_oop(oop* p) { do_oop_work(p); }
void do_oop(narrowOop* p) { do_oop_work(p); }
void set_nmethod(nmethod* nm) { _nm = nm; }
bool failures() { return _failures; }
};
class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
G1VerifyCodeRootOopClosure* _oop_cl;
public:
G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
_oop_cl(oop_cl) {}
void do_code_blob(CodeBlob* cb) {
nmethod* nm = cb->as_nmethod_or_null();
if (nm != NULL) {
_oop_cl->set_nmethod(nm);
nm->oops_do(_oop_cl);
}
}
};
class YoungRefCounterClosure : public OopClosure {
G1CollectedHeap* _g1h;
int _count;
public:
YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } }
void do_oop(narrowOop* p) { ShouldNotReachHere(); }
int count() { return _count; }
void reset_count() { _count = 0; };
};
class VerifyCLDClosure: public CLDClosure {
YoungRefCounterClosure _young_ref_counter_closure;
OopClosure *_oop_closure;
public:
VerifyCLDClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
void do_cld(ClassLoaderData* cld) {
cld->oops_do(_oop_closure, ClassLoaderData::_claim_none);
_young_ref_counter_closure.reset_count();
cld->oops_do(&_young_ref_counter_closure, ClassLoaderData::_claim_none);
if (_young_ref_counter_closure.count() > 0) {
guarantee(cld->has_modified_oops(), "CLD " PTR_FORMAT ", has young %d refs but is not dirty.", p2i(cld), _young_ref_counter_closure.count());
}
}
};
class VerifyLivenessOopClosure: public BasicOopIterateClosure {
G1CollectedHeap* _g1h;
VerifyOption _vo;
public:
VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
_g1h(g1h), _vo(vo)
{ }
void do_oop(narrowOop *p) { do_oop_work(p); }
void do_oop( oop *p) { do_oop_work(p); }
template <class T> void do_oop_work(T *p) {
oop obj = RawAccess<>::oop_load(p);
guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
"Dead object referenced by a not dead object");
}
};
class VerifyObjsInRegionClosure: public ObjectClosure {
private:
G1CollectedHeap* _g1h;
size_t _live_bytes;
HeapRegion *_hr;
VerifyOption _vo;
public:
VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
: _live_bytes(0), _hr(hr), _vo(vo) {
_g1h = G1CollectedHeap::heap();
}
void do_object(oop o) {
VerifyLivenessOopClosure isLive(_g1h, _vo);
assert(o != NULL, "Huh?");
if (!_g1h->is_obj_dead_cond(o, _vo)) {
// If the object is alive according to the full gc mark,
// then verify that the marking information agrees.
// Note we can't verify the contra-positive of the
// above: if the object is dead (according to the mark
// word), it may not be marked, or may have been marked
// but has since became dead, or may have been allocated
// since the last marking.
if (_vo == VerifyOption::G1UseFullMarking) {
guarantee(!_g1h->is_obj_dead(o), "Full GC marking and concurrent mark mismatch");
}
o->oop_iterate(&isLive);
if (_hr->obj_in_unparsable_area(o, _hr->parsable_bottom())) {
size_t obj_size = o->size();
_live_bytes += (obj_size * HeapWordSize);
}
}
}
size_t live_bytes() { return _live_bytes; }
};
class VerifyArchiveOopClosure: public BasicOopIterateClosure {
HeapRegion* _hr;
public:
VerifyArchiveOopClosure(HeapRegion *hr) : _hr(hr) { }
void do_oop(narrowOop *p) { do_oop_work(p); }
void do_oop( oop *p) { do_oop_work(p); }
template <class T> void do_oop_work(T *p) {
oop obj = RawAccess<>::oop_load(p);
if (_hr->is_open_archive()) {
guarantee(obj == NULL || G1CollectedHeap::heap()->heap_region_containing(obj)->is_archive(),
"Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
p2i(p), p2i(obj));
} else {
assert(_hr->is_closed_archive(), "should be closed archive region");
guarantee(obj == NULL || G1CollectedHeap::heap()->heap_region_containing(obj)->is_closed_archive(),
"Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
p2i(p), p2i(obj));
}
}
};
class VerifyObjectInArchiveRegionClosure: public ObjectClosure {
HeapRegion* _hr;
public:
VerifyObjectInArchiveRegionClosure(HeapRegion *hr, bool verbose)
: _hr(hr) { }
// Verify that all object pointers are to archive regions.
void do_object(oop o) {
VerifyArchiveOopClosure checkOop(_hr);
assert(o != NULL, "Should not be here for NULL oops");
o->oop_iterate(&checkOop);
}
};
// Should be only used at CDS dump time
class VerifyReadyForArchivingRegionClosure : public HeapRegionClosure {
bool _seen_free;
bool _has_holes;
bool _has_unexpected_holes;
bool _has_humongous;
public:
bool has_holes() {return _has_holes;}
bool has_unexpected_holes() {return _has_unexpected_holes;}
bool has_humongous() {return _has_humongous;}
VerifyReadyForArchivingRegionClosure() : HeapRegionClosure() {
_seen_free = false;
_has_holes = false;
_has_unexpected_holes = false;
_has_humongous = false;
}
virtual bool do_heap_region(HeapRegion* hr) {
const char* hole = "";
if (hr->is_free()) {
_seen_free = true;
} else {
if (_seen_free) {
_has_holes = true;
if (hr->is_humongous()) {
hole = " hole";
} else {
_has_unexpected_holes = true;
hole = " hole **** unexpected ****";
}
}
}
if (hr->is_humongous()) {
_has_humongous = true;
}
log_info(gc, region, cds)("HeapRegion " PTR_FORMAT " %s%s", p2i(hr->bottom()), hr->get_type_str(), hole);
return false;
}
};
// We want all used regions to be moved to the bottom-end of the heap, so we have
// a contiguous range of free regions at the top end of the heap. This way, we can
// avoid fragmentation while allocating the archive regions.
//
// Before calling this, a full GC should have been executed with a single worker thread,
// so that no old regions would be moved to the middle of the heap.
void G1HeapVerifier::verify_ready_for_archiving() {
VerifyReadyForArchivingRegionClosure cl;
G1CollectedHeap::heap()->heap_region_iterate(&cl);
if (cl.has_holes()) {
log_warning(gc, verify)("All free regions should be at the top end of the heap, but"
" we found holes. This is probably caused by (unmovable) humongous"
" allocations or active GCLocker, and may lead to fragmentation while"
" writing archive heap memory regions.");
}
if (cl.has_humongous()) {
log_warning(gc, verify)("(Unmovable) humongous regions have been found and"
" may lead to fragmentation while"
" writing archive heap memory regions.");
}
}
class VerifyArchivePointerRegionClosure: public HeapRegionClosure {
virtual bool do_heap_region(HeapRegion* r) {
if (r->is_archive()) {
VerifyObjectInArchiveRegionClosure verify_oop_pointers(r, false);
r->object_iterate(&verify_oop_pointers);
}
return false;
}
};
void G1HeapVerifier::verify_archive_regions() {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
VerifyArchivePointerRegionClosure cl;
g1h->heap_region_iterate(&cl);
}
class VerifyRegionClosure: public HeapRegionClosure {
private:
VerifyOption _vo;
bool _failures;
public:
VerifyRegionClosure(VerifyOption vo)
: _vo(vo),
_failures(false) {}
bool failures() {
return _failures;
}
bool do_heap_region(HeapRegion* r) {
guarantee(!r->has_index_in_opt_cset(), "Region %u still has opt collection set index %u", r->hrm_index(), r->index_in_opt_cset());
guarantee(!r->is_young() || r->rem_set()->is_complete(), "Remembered set for Young region %u must be complete, is %s", r->hrm_index(), r->rem_set()->get_state_str());
// Humongous and old regions regions might be of any state, so can't check here.
guarantee(!r->is_free() || !r->rem_set()->is_tracked(), "Remembered set for free region %u must be untracked, is %s", r->hrm_index(), r->rem_set()->get_state_str());
// For archive regions, verify there are no heap pointers to non-pinned regions.
if (r->is_closed_archive()) {
VerifyObjectInArchiveRegionClosure verify_oop_pointers(r, false);
r->object_iterate(&verify_oop_pointers);
} else if (r->is_open_archive()) {
VerifyObjsInRegionClosure verify_open_archive_oop(r, _vo);
r->object_iterate(&verify_open_archive_oop);
} else if (r->is_continues_humongous()) {
// Verify that the continues humongous regions' remembered set state
// matches the one from the starts humongous region.
if (r->rem_set()->get_state_str() != r->humongous_start_region()->rem_set()->get_state_str()) {
log_error(gc, verify)("Remset states differ: Region %u (%s) remset %s with starts region %u (%s) remset %s",
r->hrm_index(),
r->get_short_type_str(),
r->rem_set()->get_state_str(),
r->humongous_start_region()->hrm_index(),
r->humongous_start_region()->get_short_type_str(),
r->humongous_start_region()->rem_set()->get_state_str());
_failures = true;
}
} else {
bool failures = false;
r->verify(_vo, &failures);
if (failures) {
_failures = true;
} else if (!r->is_starts_humongous()) {
VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
r->object_iterate(¬_dead_yet_cl);
if (r->live_bytes() < not_dead_yet_cl.live_bytes()) {
log_error(gc, verify)(HR_FORMAT " max_live_bytes %zu < calculated %zu",
HR_FORMAT_PARAMS(r), r->live_bytes(), not_dead_yet_cl.live_bytes());
_failures = true;
}
}
}
// stop the region iteration if we hit a failure
return _failures;
}
};
// This is the task used for verification of the heap regions
class G1VerifyTask: public WorkerTask {
private:
G1CollectedHeap* _g1h;
VerifyOption _vo;
bool _failures;
HeapRegionClaimer _hrclaimer;
public:
G1VerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
WorkerTask("Verify task"),
_g1h(g1h),
_vo(vo),
_failures(false),
_hrclaimer(g1h->workers()->active_workers()) {}
bool failures() {
return _failures;
}
void work(uint worker_id) {
VerifyRegionClosure blk(_vo);
_g1h->heap_region_par_iterate_from_worker_offset(&blk, &_hrclaimer, worker_id);
if (blk.failures()) {
_failures = true;
}
}
};
void G1HeapVerifier::enable_verification_type(G1VerifyType type) {
// First enable will clear _enabled_verification_types.
if (_enabled_verification_types == G1VerifyAll) {
_enabled_verification_types = type;
} else {
_enabled_verification_types |= type;
}
}
bool G1HeapVerifier::should_verify(G1VerifyType type) {
return (_enabled_verification_types & type) != 0;
}
void G1HeapVerifier::verify(VerifyOption vo) {
assert_at_safepoint_on_vm_thread();
assert(Heap_lock->is_locked(), "heap must be locked");
log_debug(gc, verify)("Roots");
VerifyRootsClosure rootsCl(vo);
VerifyCLDClosure cldCl(_g1h, &rootsCl);
// We apply the relevant closures to all the oops in the
// system dictionary, class loader data graph, the string table
// and the nmethods in the code cache.
G1VerifyCodeRootOopClosure codeRootsCl(_g1h, &rootsCl, vo);
G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
{
G1RootProcessor root_processor(_g1h, 1);
root_processor.process_all_roots(&rootsCl, &cldCl, &blobsCl);
}
bool failures = rootsCl.failures() || codeRootsCl.failures();
if (!_g1h->policy()->collector_state()->in_full_gc()) {
// If we're verifying during a full GC then the region sets
// will have been torn down at the start of the GC. Therefore
// verifying the region sets will fail. So we only verify
// the region sets when not in a full GC.
log_debug(gc, verify)("HeapRegionSets");
verify_region_sets();
}
log_debug(gc, verify)("HeapRegions");
G1VerifyTask task(_g1h, vo);
_g1h->workers()->run_task(&task);
if (failures || task.failures()) {
log_error(gc, verify)("Heap after failed verification (kind %u):",
static_cast<std::underlying_type_t<VerifyOption>>(vo));
// It helps to have the per-region information in the output to
// help us track down what went wrong. This is why we call
// print_extended_on() instead of print_on().
Log(gc, verify) log;
ResourceMark rm;
LogStream ls(log.error());
_g1h->print_extended_on(&ls);
fatal("there should not have been any failures");
}
}
// Heap region set verification
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
HeapRegionSet* _old_set;
HeapRegionSet* _archive_set;
HeapRegionSet* _humongous_set;
HeapRegionManager* _hrm;
public:
uint _old_count;
uint _archive_count;
uint _humongous_count;
uint _free_count;
VerifyRegionListsClosure(HeapRegionSet* old_set,
HeapRegionSet* archive_set,
HeapRegionSet* humongous_set,
HeapRegionManager* hrm) :
_old_set(old_set), _archive_set(archive_set), _humongous_set(humongous_set), _hrm(hrm),
_old_count(), _archive_count(), _humongous_count(), _free_count(){ }
bool do_heap_region(HeapRegion* hr) {
if (hr->is_young()) {
// TODO
} else if (hr->is_humongous()) {
assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
_humongous_count++;
} else if (hr->is_empty()) {
assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
_free_count++;
} else if (hr->is_archive()) {
assert(hr->containing_set() == _archive_set, "Heap region %u is archive but not in the archive set.", hr->hrm_index());
_archive_count++;
} else if (hr->is_old()) {
assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
_old_count++;
} else {
// There are no other valid region types. Check for one invalid
// one we can identify: pinned without old or humongous set.
assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
ShouldNotReachHere();
}
return false;
}
void verify_counts(HeapRegionSet* old_set, HeapRegionSet* archive_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
guarantee(old_set->length() == _old_count, "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count);
guarantee(archive_set->length() == _archive_count, "Archive set count mismatch. Expected %u, actual %u.", archive_set->length(), _archive_count);
guarantee(humongous_set->length() == _humongous_count, "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count);
guarantee(free_list->num_free_regions() == _free_count, "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count);
}
};
void G1HeapVerifier::verify_region_sets() {
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
// First, check the explicit lists.
_g1h->_hrm.verify();
// Finally, make sure that the region accounting in the lists is
// consistent with what we see in the heap.
VerifyRegionListsClosure cl(&_g1h->_old_set, &_g1h->_archive_set, &_g1h->_humongous_set, &_g1h->_hrm);
_g1h->heap_region_iterate(&cl);
cl.verify_counts(&_g1h->_old_set, &_g1h->_archive_set, &_g1h->_humongous_set, &_g1h->_hrm);
}
void G1HeapVerifier::prepare_for_verify() {
if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
_g1h->ensure_parsability(false);
}
}
void G1HeapVerifier::verify(G1VerifyType type, VerifyOption vo, const char* msg) {
if (should_verify(type) && _g1h->total_collections() >= VerifyGCStartAt) {
prepare_for_verify();
Universe::verify(vo, msg);
}
}
void G1HeapVerifier::verify_before_gc(G1VerifyType type) {
verify(type, VerifyOption::G1UseConcMarking, "Before GC");
}
void G1HeapVerifier::verify_after_gc(G1VerifyType type) {
verify(type, VerifyOption::G1UseConcMarking, "After GC");
}
void G1HeapVerifier::verify_bitmap_clear(bool from_tams) {
if (!G1VerifyBitmaps) {
return;
}
class G1VerifyBitmapClear : public HeapRegionClosure {
bool _from_tams;
public:
G1VerifyBitmapClear(bool from_tams) : _from_tams(from_tams) { }
virtual bool do_heap_region(HeapRegion* r) {
G1CMBitMap* bitmap = G1CollectedHeap::heap()->concurrent_mark()->mark_bitmap();
HeapWord* start = _from_tams ? r->top_at_mark_start() : r->bottom();
HeapWord* mark = bitmap->get_next_marked_addr(start, r->end());
guarantee(mark == r->end(), "Found mark at " PTR_FORMAT " in region %u from start " PTR_FORMAT, p2i(mark), r->hrm_index(), p2i(start));
return false;
}
} cl(from_tams);
G1CollectedHeap::heap()->heap_region_iterate(&cl);
}
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
G1HeapVerifier* _verifier;
public:
G1VerifyCardTableCleanup(G1HeapVerifier* verifier)
: _verifier(verifier) { }
virtual bool do_heap_region(HeapRegion* r) {
if (r->is_survivor()) {
_verifier->verify_dirty_region(r);
} else {
_verifier->verify_not_dirty_region(r);
}
return false;
}
};
void G1HeapVerifier::verify_card_table_cleanup() {
if (G1VerifyCTCleanup || VerifyAfterGC) {
G1VerifyCardTableCleanup cleanup_verifier(this);
_g1h->heap_region_iterate(&cleanup_verifier);
}
}
void G1HeapVerifier::verify_not_dirty_region(HeapRegion* hr) {
// All of the region should be clean.
G1CardTable* ct = _g1h->card_table();
MemRegion mr(hr->bottom(), hr->end());
ct->verify_not_dirty_region(mr);
}
void G1HeapVerifier::verify_dirty_region(HeapRegion* hr) {
// We cannot guarantee that [bottom(),end()] is dirty. Threads
// dirty allocated blocks as they allocate them. The thread that
// retires each region and replaces it with a new one will do a
// maximal allocation to fill in [pre_dummy_top(),end()] but will
// not dirty that area (one less thing to have to do while holding
// a lock). So we can only verify that [bottom(),pre_dummy_top()]
// is dirty.
G1CardTable* ct = _g1h->card_table();
MemRegion mr(hr->bottom(), hr->pre_dummy_top());
if (hr->is_young()) {
ct->verify_g1_young_region(mr);
} else {
ct->verify_dirty_region(mr);
}
}
class G1VerifyDirtyYoungListClosure : public HeapRegionClosure {
private:
G1HeapVerifier* _verifier;
public:
G1VerifyDirtyYoungListClosure(G1HeapVerifier* verifier) : HeapRegionClosure(), _verifier(verifier) { }
virtual bool do_heap_region(HeapRegion* r) {
_verifier->verify_dirty_region(r);
return false;
}
};
void G1HeapVerifier::verify_dirty_young_regions() {
G1VerifyDirtyYoungListClosure cl(this);
_g1h->collection_set()->iterate(&cl);
}
class G1CheckRegionAttrTableClosure : public HeapRegionClosure {
private:
bool _failures;
public:
G1CheckRegionAttrTableClosure() : HeapRegionClosure(), _failures(false) { }
virtual bool do_heap_region(HeapRegion* hr) {
uint i = hr->hrm_index();
G1HeapRegionAttr region_attr = (G1HeapRegionAttr) G1CollectedHeap::heap()->_region_attr.get_by_index(i);
if (hr->is_humongous()) {
if (hr->in_collection_set()) {
log_error(gc, verify)("## humongous region %u in CSet", i);
_failures = true;
return true;
}
if (region_attr.is_in_cset()) {
log_error(gc, verify)("## inconsistent region attr type %s for humongous region %u", region_attr.get_type_str(), i);
_failures = true;
return true;
}
if (hr->is_continues_humongous() && region_attr.is_humongous_candidate()) {
log_error(gc, verify)("## inconsistent region attr type %s for continues humongous region %u", region_attr.get_type_str(), i);
_failures = true;
return true;
}
} else {
if (region_attr.is_humongous_candidate()) {
log_error(gc, verify)("## inconsistent region attr type %s for non-humongous region %u", region_attr.get_type_str(), i);
_failures = true;
return true;
}
if (hr->in_collection_set() != region_attr.is_in_cset()) {
log_error(gc, verify)("## in CSet %d / region attr type %s inconsistency for region %u",
hr->in_collection_set(), region_attr.get_type_str(), i);
_failures = true;
return true;
}
if (region_attr.is_in_cset()) {
if (hr->is_archive()) {
log_error(gc, verify)("## is_archive in collection set for region %u", i);
_failures = true;
return true;
}
if (hr->is_young() != (region_attr.is_young())) {
log_error(gc, verify)("## is_young %d / region attr type %s inconsistency for region %u",
hr->is_young(), region_attr.get_type_str(), i);
_failures = true;
return true;
}
if (hr->is_old() != (region_attr.is_old())) {
log_error(gc, verify)("## is_old %d / region attr type %s inconsistency for region %u",
hr->is_old(), region_attr.get_type_str(), i);
_failures = true;
return true;
}
}
}
return false;
}
bool failures() const { return _failures; }
};
bool G1HeapVerifier::check_region_attr_table() {
G1CheckRegionAttrTableClosure cl;
_g1h->_hrm.iterate(&cl);
return !cl.failures();
}
#endif // PRODUCT
¤ Dauer der Verarbeitung: 0.0 Sekunden
(vorverarbeitet)
¤
|
Haftungshinweis
Die Informationen auf dieser Webseite wurden
nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit,
noch Qualität der bereit gestellten Informationen zugesichert.
Bemerkung:
Die farbliche Syntaxdarstellung ist noch experimentell.
|