Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: space.hpp   Sprache: C

/*
 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */


#ifndef SHARE_GC_SHARED_SPACE_HPP
#define SHARE_GC_SHARED_SPACE_HPP

#include "gc/shared/blockOffsetTable.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/workerThread.hpp"
#include "memory/allocation.hpp"
#include "memory/iterator.hpp"
#include "memory/memRegion.hpp"
#include "oops/markWord.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/align.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_SERIALGC
#include "gc/serial/serialBlockOffsetTable.hpp"
#endif

// A space is an abstraction for the "storage units" backing
// up the generation abstraction. It includes specific
// implementations for keeping track of free and used space,
// for iterating over objects and free blocks, etc.

// Forward decls.
class Space;
class ContiguousSpace;
#if INCLUDE_SERIALGC
class BlockOffsetArray;
class BlockOffsetArrayContigSpace;
class BlockOffsetTable;
#endif
class Generation;
class CompactibleSpace;
class CardTableRS;
class DirtyCardToOopClosure;
class FilteringClosure;

// A Space describes a heap area. Class Space is an abstract
// base class.
//
// Space supports allocation, size computation and GC support is provided.
//
// Invariant: bottom() and end() are on page_size boundaries and
// bottom() <= top() <= end()
// top() is inclusive and end() is exclusive.

class Space: public CHeapObj<mtGC> {
  friend class VMStructs;
 protected:
  HeapWord* _bottom;
  HeapWord* _end;

  // Used in support of save_marks()
  HeapWord* _saved_mark_word;

  Space():
    _bottom(NULL), _end(NULL) { }

 public:
  // Accessors
  HeapWord* bottom() const         { return _bottom; }
  HeapWord* end() const            { return _end;    }
  virtual void set_bottom(HeapWord* value) { _bottom = value; }
  virtual void set_end(HeapWord* value)    { _end = value; }

  virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }

  void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }

  // Returns true if this object has been allocated since a
  // generation's "save_marks" call.
  virtual bool obj_allocated_since_save_marks(const oop obj) const {
    return cast_from_oop<HeapWord*>(obj) >= saved_mark_word();
  }

  // Returns a subregion of the space containing only the allocated objects in
  // the space.
  virtual MemRegion used_region() const = 0;

  // Returns a region that is guaranteed to contain (at least) all objects
  // allocated at the time of the last call to "save_marks".  If the space
  // initializes its DirtyCardToOopClosure's specifying the "contig" option
  // (that is, if the space is contiguous), then this region must contain only
  // such objects: the memregion will be from the bottom of the region to the
  // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
  // the space must distinguish between objects in the region allocated before
  // and after the call to save marks.
  MemRegion used_region_at_save_marks() const {
    return MemRegion(bottom(), saved_mark_word());
  }

  // Initialization.
  // "initialize" should be called once on a space, before it is used for
  // any purpose.  The "mr" arguments gives the bounds of the space, and
  // the "clear_space" argument should be true unless the memory in "mr" is
  // known to be zeroed.
  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);

  // The "clear" method must be called on a region that may have
  // had allocation performed in it, but is now to be considered empty.
  virtual void clear(bool mangle_space);

  // For detecting GC bugs.  Should only be called at GC boundaries, since
  // some unused space may be used as scratch space during GC's.
  // We also call this when expanding a space to satisfy an allocation
  // request. See bug #4668531
  virtual void mangle_unused_area() = 0;
  virtual void mangle_unused_area_complete() = 0;

  // Testers
  bool is_empty() const              { return used() == 0; }

  // Returns true iff the given the space contains the
  // given address as part of an allocated object. For
  // certain kinds of spaces, this might be a potentially
  // expensive operation. To prevent performance problems
  // on account of its inadvertent use in product jvm's,
  // we restrict its use to assertion checks only.
  bool is_in(const void* p) const {
    return used_region().contains(p);
  }
  bool is_in(oop obj) const {
    return is_in((void*)obj);
  }

  // Returns true iff the given reserved memory of the space contains the
  // given address.
  bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }

  // Returns true iff the given block is not allocated.
  virtual bool is_free_block(const HeapWord* p) const = 0;

  // Test whether p is double-aligned
  static bool is_aligned(void* p) {
    return ::is_aligned(p, sizeof(double));
  }

  // Size computations.  Sizes are in bytes.
  size_t capacity()     const { return byte_size(bottom(), end()); }
  virtual size_t used() const = 0;
  virtual size_t free() const = 0;

  // Iterate over all the ref-containing fields of all objects in the
  // space, calling "cl.do_oop" on each.  Fields in objects allocated by
  // applications of the closure are not included in the iteration.
  virtual void oop_iterate(OopIterateClosure* cl);

  // Iterate over all objects in the space, calling "cl.do_object" on
  // each.  Objects allocated by applications of the closure are not
  // included in the iteration.
  virtual void object_iterate(ObjectClosure* blk) = 0;

  // Create and return a new dirty card to oop closure. Can be
  // overridden to return the appropriate type of closure
  // depending on the type of space in which the closure will
  // operate. ResourceArea allocated.
  virtual DirtyCardToOopClosure* new_dcto_cl(OopIterateClosure* cl,
                                             CardTable::PrecisionStyle precision,
                                             HeapWord* boundary);

  // If "p" is in the space, returns the address of the start of the
  // "block" that contains "p".  We say "block" instead of "object" since
  // some heaps may not pack objects densely; a chunk may either be an
  // object or a non-object.  If "p" is not in the space, return NULL.
  virtual HeapWord* block_start_const(const void* p) const = 0;

  // The non-const version may have benevolent side effects on the data
  // structure supporting these calls, possibly speeding up future calls.
  // The default implementation, however, is simply to call the const
  // version.
  virtual HeapWord* block_start(const void* p);

  // Requires "addr" to be the start of a chunk, and returns its size.
  // "addr + size" is required to be the start of a new chunk, or the end
  // of the active area of the heap.
  virtual size_t block_size(const HeapWord* addr) const = 0;

  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  // the block is an object.
  virtual bool block_is_obj(const HeapWord* addr) const = 0;

  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  // the block is an object and the object is alive.
  virtual bool obj_is_alive(const HeapWord* addr) const;

  // Allocation (return NULL if full).  Assumes the caller has established
  // mutually exclusive access to the space.
  virtual HeapWord* allocate(size_t word_size) = 0;

  // Allocation (return NULL if full).  Enforces mutual exclusion internally.
  virtual HeapWord* par_allocate(size_t word_size) = 0;

#if INCLUDE_SERIALGC
  // Mark-sweep-compact support: all spaces can update pointers to objects
  // moving as a part of compaction.
  virtual void adjust_pointers() = 0;
#endif

  virtual void print() const;
  virtual void print_on(outputStream* st) const;
  virtual void print_short() const;
  virtual void print_short_on(outputStream* st) const;


  // IF "this" is a ContiguousSpace, return it, else return NULL.
  virtual ContiguousSpace* toContiguousSpace() {
    return NULL;
  }

  // Debugging
  virtual void verify() const = 0;
};

// A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
// OopClosure to (the addresses of) all the ref-containing fields that could
// be modified by virtue of the given MemRegion being dirty. (Note that
// because of the imprecise nature of the write barrier, this may iterate
// over oops beyond the region.)
// This base type for dirty card to oop closures handles memory regions
// in non-contiguous spaces with no boundaries, and should be sub-classed
// to support other space types. See ContiguousDCTOC for a sub-class
// that works with ContiguousSpaces.

class DirtyCardToOopClosure: public MemRegionClosureRO {
protected:
  OopIterateClosure* _cl;
  Space* _sp;
  CardTable::PrecisionStyle _precision;
  HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
                                // pointing below boundary.
  HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
                                // a downwards traversal; this is the
                                // lowest location already done (or,
                                // alternatively, the lowest address that
                                // shouldn't be done again.  NULL means infinity.)
  NOT_PRODUCT(HeapWord* _last_bottom;)

  // Get the actual top of the area on which the closure will
  // operate, given where the top is assumed to be (the end of the
  // memory region passed to do_MemRegion) and where the object
  // at the top is assumed to start. For example, an object may
  // start at the top but actually extend past the assumed top,
  // in which case the top becomes the end of the object.
  virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);

  // Walk the given memory region from bottom to (actual) top
  // looking for objects and applying the oop closure (_cl) to
  // them. The base implementation of this treats the area as
  // blocks, where a block may or may not be an object. Sub-
  // classes should override this to provide more accurate
  // or possibly more efficient walking.
  virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);

public:
  DirtyCardToOopClosure(Space* sp, OopIterateClosure* cl,
                        CardTable::PrecisionStyle precision,
                        HeapWord* boundary) :
    _cl(cl), _sp(sp), _precision(precision), _boundary(boundary),
    _min_done(NULL) {
    NOT_PRODUCT(_last_bottom = NULL);
  }

  void do_MemRegion(MemRegion mr) override;
};

// A structure to represent a point at which objects are being copied
// during compaction.
class CompactPoint : public StackObj {
public:
  Generation* gen;
  CompactibleSpace* space;

  CompactPoint(Generation* g = NULL) :
    gen(g), space(NULL) {}
};

// A space that supports compaction operations.  This is usually, but not
// necessarily, a space that is normally contiguous.  But, for example, a
// free-list-based space whose normal collection is a mark-sweep without
// compaction could still support compaction in full GC's.
class CompactibleSpace: public Space {
  friend class VMStructs;
private:
  HeapWord* _compaction_top;
  CompactibleSpace* _next_compaction_space;

  template <class SpaceType>
  static inline void verify_up_to_first_dead(SpaceType* space) NOT_DEBUG_RETURN;

  template <class SpaceType>
  static inline void clear_empty_region(SpaceType* space);

public:
  CompactibleSpace() :
   _compaction_top(NULL), _next_compaction_space(NULL) {}

  void initialize(MemRegion mr, bool clear_space, bool mangle_space) override;
  void clear(bool mangle_space) override;

  // Used temporarily during a compaction phase to hold the value
  // top should have when compaction is complete.
  HeapWord* compaction_top() const { return _compaction_top;    }

  void set_compaction_top(HeapWord* value) {
    assert(value == NULL || (value >= bottom() && value <= end()),
      "should point inside space");
    _compaction_top = value;
  }

  // Perform operations on the space needed after a compaction
  // has been performed.
  virtual void reset_after_compaction() = 0;

  // Returns the next space (in the current generation) to be compacted in
  // the global compaction order.  Also is used to select the next
  // space into which to compact.

  virtual CompactibleSpace* next_compaction_space() const {
    return _next_compaction_space;
  }

  void set_next_compaction_space(CompactibleSpace* csp) {
    _next_compaction_space = csp;
  }

#if INCLUDE_SERIALGC
  // MarkSweep support phase2

  // Start the process of compaction of the current space: compute
  // post-compaction addresses, and insert forwarding pointers.  The fields
  // "cp->gen" and "cp->compaction_space" are the generation and space into
  // which we are currently compacting.  This call updates "cp" as necessary,
  // and leaves the "compaction_top" of the final value of
  // "cp->compaction_space" up-to-date.  Offset tables may be updated in
  // this phase as if the final copy had occurred; if so, "cp->threshold"
  // indicates when the next such action should be taken.
  virtual void prepare_for_compaction(CompactPoint* cp) = 0;
  // MarkSweep support phase3
  void adjust_pointers() override;
  // MarkSweep support phase4
  virtual void compact();
#endif // INCLUDE_SERIALGC

  // The maximum percentage of objects that can be dead in the compacted
  // live part of a compacted space ("deadwood" support.)
  virtual size_t allowed_dead_ratio() const { return 0; };

  // Some contiguous spaces may maintain some data structures that should
  // be updated whenever an allocation crosses a boundary.  This function
  // initializes these data structures for further updates.
  virtual void initialize_threshold() { }

  // "q" is an object of the given "size" that should be forwarded;
  // "cp" names the generation ("gen") and containing "this" (which must
  // also equal "cp->space").  "compact_top" is where in "this" the
  // next object should be forwarded to.  If there is room in "this" for
  // the object, insert an appropriate forwarding pointer in "q".
  // If not, go to the next compaction space (there must
  // be one, since compaction must succeed -- we go to the first space of
  // the previous generation if necessary, updating "cp"), reset compact_top
  // and then forward.  In either case, returns the new value of "compact_top".
  // Invokes the "alloc_block" function of the then-current compaction
  // space.
  virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
                    HeapWord* compact_top);
protected:
  // Used during compaction.
  HeapWord* _first_dead;
  HeapWord* _end_of_live;

  // This the function to invoke when an allocation of an object covering
  // "start" to "end" occurs to update other internal data structures.
  virtual void alloc_block(HeapWord* start, HeapWord* the_end) { }
};

class GenSpaceMangler;

// A space in which the free area is contiguous.  It therefore supports
// faster allocation, and compaction.
class ContiguousSpace: public CompactibleSpace {
  friend class VMStructs;

 protected:
  HeapWord* _top;
  // A helper for mangling the unused area of the space in debug builds.
  GenSpaceMangler* _mangler;

  GenSpaceMangler* mangler() { return _mangler; }

  // Allocation helpers (return NULL if full).
  inline HeapWord* allocate_impl(size_t word_size);
  inline HeapWord* par_allocate_impl(size_t word_size);

 public:
  ContiguousSpace();
  ~ContiguousSpace();

  void initialize(MemRegion mr, bool clear_space, bool mangle_space) override;
  void clear(bool mangle_space) override;

  // Accessors
  HeapWord* top() const            { return _top;    }
  void set_top(HeapWord* value)    { _top = value; }

  void set_saved_mark()            { _saved_mark_word = top();    }
  void reset_saved_mark()          { _saved_mark_word = bottom(); }

  bool saved_mark_at_top() const { return saved_mark_word() == top(); }

  // In debug mode mangle (write it with a particular bit
  // pattern) the unused part of a space.

  // Used to save the address in a space for later use during mangling.
  void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
  // Used to save the space's current top for later use during mangling.
  void set_top_for_allocations() PRODUCT_RETURN;

  // Mangle regions in the space from the current top up to the
  // previously mangled part of the space.
  void mangle_unused_area() override PRODUCT_RETURN;
  // Mangle [top, end)
  void mangle_unused_area_complete() override PRODUCT_RETURN;

  // Do some sparse checking on the area that should have been mangled.
  void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
  // Check the complete area that should have been mangled.
  // This code may be NULL depending on the macro DEBUG_MANGLING.
  void check_mangled_unused_area_complete() PRODUCT_RETURN;

  // Size computations: sizes in bytes.
  size_t used() const override   { return byte_size(bottom(), top()); }
  size_t free() const override   { return byte_size(top(),    end()); }

  bool is_free_block(const HeapWord* p) const override;

  // In a contiguous space we have a more obvious bound on what parts
  // contain objects.
  MemRegion used_region() const override { return MemRegion(bottom(), top()); }

  // Allocation (return NULL if full)
  HeapWord* allocate(size_t word_size) override;
  HeapWord* par_allocate(size_t word_size) override;

  // Iteration
  void oop_iterate(OopIterateClosure* cl) override;
  void object_iterate(ObjectClosure* blk) override;

  // Compaction support
  void reset_after_compaction() override {
    assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
    set_top(compaction_top());
  }

  // Override.
  DirtyCardToOopClosure* new_dcto_cl(OopIterateClosure* cl,
                                     CardTable::PrecisionStyle precision,
                                     HeapWord* boundary) override;

  // Apply "blk->do_oop" to the addresses of all reference fields in objects
  // starting with the _saved_mark_word, which was noted during a generation's
  // save_marks and is required to denote the head of an object.
  // Fields in objects allocated by applications of the closure
  // *are* included in the iteration.
  // Updates _saved_mark_word to point to just after the last object
  // iterated over.
  template <typename OopClosureType>
  void oop_since_save_marks_iterate(OopClosureType* blk);

  // Same as object_iterate, but starting from "mark", which is required
  // to denote the start of an object.  Objects allocated by
  // applications of the closure *are* included in the iteration.
  virtual void object_iterate_from(HeapWord* mark, ObjectClosure* blk);

  // Very inefficient implementation.
  HeapWord* block_start_const(const void* p) const override;
  size_t block_size(const HeapWord* p) const override;
  // If a block is in the allocated area, it is an object.
  bool block_is_obj(const HeapWord* p) const override { return p < top(); }

  // Addresses for inlined allocation
  HeapWord** top_addr() { return &_top; }
  HeapWord** end_addr() { return &_end; }

#if INCLUDE_SERIALGC
  // Overrides for more efficient compaction support.
  void prepare_for_compaction(CompactPoint* cp) override;
#endif

  void print_on(outputStream* st) const override;

  // Checked dynamic downcasts.
  ContiguousSpace* toContiguousSpace() override {
    return this;
  }

  // Debugging
  void verify() const override;
};

// A dirty card to oop closure for contiguous spaces (ContiguousSpace and
// sub-classes). It knows how to filter out objects that are outside of the
// _boundary.
//
// Assumptions:
// 1. That the actual top of any area in a memory region
//    contained by the space is bounded by the end of the contiguous
//    region of the space.
// 2. That the space is really made up of objects and not just
//    blocks.
class ContiguousSpaceDCTOC : public DirtyCardToOopClosure {
  // Overrides.
  void walk_mem_region(MemRegion mr,
                       HeapWord* bottom, HeapWord* top) override;

  HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) override;

  // Walk the given memory region, from bottom to top, applying
  // the given oop closure to (possibly) all objects found. The
  // given oop closure may or may not be the same as the oop
  // closure with which this closure was created, as it may
  // be a filtering closure which makes use of the _boundary.
  // We offer two signatures, so the FilteringClosure static type is
  // apparent.
  void walk_mem_region_with_cl(MemRegion mr,
                               HeapWord* bottom, HeapWord* top,
                               OopIterateClosure* cl);
  void walk_mem_region_with_cl(MemRegion mr,
                               HeapWord* bottom, HeapWord* top,
                               FilteringClosure* cl);

public:
  ContiguousSpaceDCTOC(ContiguousSpace* sp, OopIterateClosure* cl,
                       CardTable::PrecisionStyle precision,
                       HeapWord* boundary) :
    DirtyCardToOopClosure(sp, cl, precision, boundary)
  {}
};

// A ContigSpace that Supports an efficient "block_start" operation via
// a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
// other spaces.)  This is the abstract base class for old generation
// (tenured) spaces.

#if INCLUDE_SERIALGC
class OffsetTableContigSpace: public ContiguousSpace {
  friend class VMStructs;
 protected:
  BlockOffsetArrayContigSpace _offsets;
  Mutex _par_alloc_lock;

 public:
  // Constructor
  OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
                         MemRegion mr);

  void set_bottom(HeapWord* value) override;
  void set_end(HeapWord* value) override;

  void clear(bool mangle_space) override;

  inline HeapWord* block_start_const(const void* p) const override;

  // Add offset table update.
  inline HeapWord* allocate(size_t word_size) override;
  inline HeapWord* par_allocate(size_t word_size) override;

  // MarkSweep support phase3
  void initialize_threshold() override;
  void alloc_block(HeapWord* start, HeapWord* end) override;

  void print_on(outputStream* st) const override;

  // Debugging
  void verify() const override;
};


// Class TenuredSpace is used by TenuredGeneration

class TenuredSpace: public OffsetTableContigSpace {
  friend class VMStructs;
 protected:
  // Mark sweep support
  size_t allowed_dead_ratio() const override;
 public:
  // Constructor
  TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
               MemRegion mr) :
    OffsetTableContigSpace(sharedOffsetArray, mr) {}
};
#endif //INCLUDE_SERIALGC

#endif // SHARE_GC_SHARED_SPACE_HPP

¤ Dauer der Verarbeitung: 0.21 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff



                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....
    

Besucherstatistik

Besucherstatistik