|
|
Quellcode-Bibliothek
© Kompilation durch diese Firma
[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]
Datei:
Sprache: Shell
|
|
/*
* Copyright (c) 2012, 2022, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "classfile/javaClasses.inline.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmClasses.hpp"
#include "compiler/compileBroker.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/oopStorage.inline.hpp"
#include "jvmci/jniAccessMark.inline.hpp"
#include "jvmci/jvmciCompilerToVM.hpp"
#include "jvmci/jvmciCodeInstaller.hpp"
#include "jvmci/jvmciRuntime.hpp"
#include "jvmci/metadataHandles.hpp"
#include "logging/log.hpp"
#include "memory/oopFactory.hpp"
#include "memory/universe.hpp"
#include "oops/constantPool.inline.hpp"
#include "oops/klass.inline.hpp"
#include "oops/method.inline.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "oops/typeArrayOop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/atomic.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/fieldDescriptor.inline.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/mutex.hpp"
#include "runtime/reflectionUtils.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/synchronizer.hpp"
#if INCLUDE_G1GC
#include "gc/g1/g1BarrierSetRuntime.hpp"
#endif // INCLUDE_G1GC
// Simple helper to see if the caller of a runtime stub which
// entered the VM has been deoptimized
static bool caller_is_deopted() {
JavaThread* thread = JavaThread::current();
RegisterMap reg_map(thread,
RegisterMap::UpdateMap::skip,
RegisterMap::ProcessFrames::include,
RegisterMap::WalkContinuation::skip);
frame runtime_frame = thread->last_frame();
frame caller_frame = runtime_frame.sender(®_map);
assert(caller_frame.is_compiled_frame(), "must be compiled");
return caller_frame.is_deoptimized_frame();
}
// Stress deoptimization
static void deopt_caller() {
if ( !caller_is_deopted()) {
JavaThread* thread = JavaThread::current();
RegisterMap reg_map(thread,
RegisterMap::UpdateMap::skip,
RegisterMap::ProcessFrames::include,
RegisterMap::WalkContinuation::skip);
frame runtime_frame = thread->last_frame();
frame caller_frame = runtime_frame.sender(®_map);
Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint);
assert(caller_is_deopted(), "Must be deoptimized");
}
}
// Manages a scope for a JVMCI runtime call that attempts a heap allocation.
// If there is a pending nonasync exception upon closing the scope and the runtime
// call is of the variety where allocation failure returns NULL without an
// exception, the following action is taken:
// 1. The pending nonasync exception is cleared
// 2. NULL is written to JavaThread::_vm_result
// 3. Checks that an OutOfMemoryError is Universe::out_of_memory_error_retry().
class RetryableAllocationMark: public StackObj {
private:
JavaThread* _thread;
public:
RetryableAllocationMark(JavaThread* thread, bool activate) {
if (activate) {
assert(!thread->in_retryable_allocation(), "retryable allocation scope is non-reentrant");
_thread = thread;
_thread->set_in_retryable_allocation(true);
} else {
_thread = NULL;
}
}
~RetryableAllocationMark() {
if (_thread != NULL) {
_thread->set_in_retryable_allocation(false);
JavaThread* THREAD = _thread; // For exception macros.
if (HAS_PENDING_EXCEPTION) {
oop ex = PENDING_EXCEPTION;
// Do not clear probable async exceptions.
CLEAR_PENDING_NONASYNC_EXCEPTION;
oop retry_oome = Universe::out_of_memory_error_retry();
if (ex->is_a(retry_oome->klass()) && retry_oome != ex) {
ResourceMark rm;
fatal("Unexpected exception in scope of retryable allocation: " INTPTR_FORMAT " of type %s", p2i(ex), ex->klass()->external_name());
}
_thread->set_vm_result(NULL);
}
}
}
};
JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance_common(JavaThread* current, Klass* klass, bool null_on_fail))
JRT_BLOCK;
assert(klass->is_klass(), "not a class");
Handle holder(current, klass->klass_holder()); // keep the klass alive
InstanceKlass* h = InstanceKlass::cast(klass);
{
RetryableAllocationMark ram(current, null_on_fail);
h->check_valid_for_instantiation(true, CHECK);
oop obj;
if (null_on_fail) {
if (!h->is_initialized()) {
// Cannot re-execute class initialization without side effects
// so return without attempting the initialization
return;
}
} else {
// make sure klass is initialized
h->initialize(CHECK);
}
// allocate instance and return via TLS
obj = h->allocate_instance(CHECK);
current->set_vm_result(obj);
}
JRT_BLOCK_END;
SharedRuntime::on_slowpath_allocation_exit(current);
JRT_END
JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array_common(JavaThread* current, Klass* array_klass, jint length, bool null_on_fail))
JRT_BLOCK;
// Note: no handle for klass needed since they are not used
// anymore after new_objArray() and no GC can happen before.
// (This may have to change if this code changes!)
assert(array_klass->is_klass(), "not a class");
oop obj;
if (array_klass->is_typeArray_klass()) {
BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type();
RetryableAllocationMark ram(current, null_on_fail);
obj = oopFactory::new_typeArray(elt_type, length, CHECK);
} else {
Handle holder(current, array_klass->klass_holder()); // keep the klass alive
Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
RetryableAllocationMark ram(current, null_on_fail);
obj = oopFactory::new_objArray(elem_klass, length, CHECK);
}
current->set_vm_result(obj);
// This is pretty rare but this runtime patch is stressful to deoptimization
// if we deoptimize here so force a deopt to stress the path.
if (DeoptimizeALot) {
static int deopts = 0;
// Alternate between deoptimizing and raising an error (which will also cause a deopt)
if (deopts++ % 2 == 0) {
if (null_on_fail) {
return;
} else {
ResourceMark rm(current);
THROW(vmSymbols::java_lang_OutOfMemoryError());
}
} else {
deopt_caller();
}
}
JRT_BLOCK_END;
SharedRuntime::on_slowpath_allocation_exit(current);
JRT_END
JRT_ENTRY(void, JVMCIRuntime::new_multi_array_common(JavaThread* current, Klass* klass, int rank, jint* dims, bool null_on_fail))
assert(klass->is_klass(), "not a class");
assert(rank >= 1, "rank must be nonzero");
Handle holder(current, klass->klass_holder()); // keep the klass alive
RetryableAllocationMark ram(current, null_on_fail);
oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
current->set_vm_result(obj);
JRT_END
JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array_common(JavaThread* current, oopDesc* element_mirror, jint length, bool null_on_fail))
RetryableAllocationMark ram(current, null_on_fail);
oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK);
current->set_vm_result(obj);
JRT_END
JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance_common(JavaThread* current, oopDesc* type_mirror, bool null_on_fail))
InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(type_mirror));
if (klass == NULL) {
ResourceMark rm(current);
THROW(vmSymbols::java_lang_InstantiationException());
}
RetryableAllocationMark ram(current, null_on_fail);
// Create new instance (the receiver)
klass->check_valid_for_instantiation(false, CHECK);
if (null_on_fail) {
if (!klass->is_initialized()) {
// Cannot re-execute class initialization without side effects
// so return without attempting the initialization
return;
}
} else {
// Make sure klass gets initialized
klass->initialize(CHECK);
}
oop obj = klass->allocate_instance(CHECK);
current->set_vm_result(obj);
JRT_END
extern void vm_exit(int code);
// Enter this method from compiled code handler below. This is where we transition
// to VM mode. This is done as a helper routine so that the method called directly
// from compiled code does not have to transition to VM. This allows the entry
// method to see if the nmethod that we have just looked up a handler for has
// been deoptimized while we were in the vm. This simplifies the assembly code
// cpu directories.
//
// We are entering here from exception stub (via the entry method below)
// If there is a compiled exception handler in this method, we will continue there;
// otherwise we will unwind the stack and continue at the caller of top frame method
// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
// control the area where we can allow a safepoint. After we exit the safepoint area we can
// check to see if the handler we are going to return is now in a nmethod that has
// been deoptimized. If that is the case we return the deopt blob
// unpack_with_exception entry instead. This makes life for the exception blob easier
// because making that same check and diverting is painful from assembly language.
JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, CompiledMethod*& cm))
// Reset method handle flag.
current->set_is_method_handle_return(false);
Handle exception(current, ex);
cm = CodeCache::find_compiled(pc);
assert(cm != NULL, "this is not a compiled method");
// Adjust the pc as needed/
if (cm->is_deopt_pc(pc)) {
RegisterMap map(current,
RegisterMap::UpdateMap::skip,
RegisterMap::ProcessFrames::include,
RegisterMap::WalkContinuation::skip);
frame exception_frame = current->last_frame().sender(&map);
// if the frame isn't deopted then pc must not correspond to the caller of last_frame
assert(exception_frame.is_deoptimized_frame(), "must be deopted");
pc = exception_frame.pc();
}
assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
assert(oopDesc::is_oop(exception()), "just checking");
// Check that exception is a subclass of Throwable
assert(exception->is_a(vmClasses::Throwable_klass()),
"Exception not subclass of Throwable");
// debugging support
// tracing
if (log_is_enabled(Info, exceptions)) {
ResourceMark rm;
stringStream tempst;
assert(cm->method() != NULL, "Unexpected null method()");
tempst.print("JVMCI compiled method <%s>\n"
" at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
cm->method()->print_value_string(), p2i(pc), p2i(current));
Exceptions::log_exception(exception, tempst.as_string());
}
// for AbortVMOnException flag
Exceptions::debug_check_abort(exception);
// Check the stack guard pages and re-enable them if necessary and there is
// enough space on the stack to do so. Use fast exceptions only if the guard
// pages are enabled.
bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
if (JvmtiExport::can_post_on_exceptions()) {
// To ensure correct notification of exception catches and throws
// we have to deoptimize here. If we attempted to notify the
// catches and throws during this exception lookup it's possible
// we could deoptimize on the way out of the VM and end back in
// the interpreter at the throw site. This would result in double
// notifications since the interpreter would also notify about
// these same catches and throws as it unwound the frame.
RegisterMap reg_map(current,
RegisterMap::UpdateMap::include,
RegisterMap::ProcessFrames::include,
RegisterMap::WalkContinuation::skip);
frame stub_frame = current->last_frame();
frame caller_frame = stub_frame.sender(®_map);
// We don't really want to deoptimize the nmethod itself since we
// can actually continue in the exception handler ourselves but I
// don't see an easy way to have the desired effect.
Deoptimization::deoptimize_frame(current, caller_frame.id(), Deoptimization::Reason_constraint);
assert(caller_is_deopted(), "Must be deoptimized");
return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
}
// ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
if (guard_pages_enabled) {
address fast_continuation = cm->handler_for_exception_and_pc(exception, pc);
if (fast_continuation != NULL) {
// Set flag if return address is a method handle call site.
current->set_is_method_handle_return(cm->is_method_handle_return(pc));
return fast_continuation;
}
}
// If the stack guard pages are enabled, check whether there is a handler in
// the current method. Otherwise (guard pages disabled), force an unwind and
// skip the exception cache update (i.e., just leave continuation==NULL).
address continuation = NULL;
if (guard_pages_enabled) {
// New exception handling mechanism can support inlined methods
// with exception handlers since the mappings are from PC to PC
// Clear out the exception oop and pc since looking up an
// exception handler can cause class loading, which might throw an
// exception and those fields are expected to be clear during
// normal bytecode execution.
current->clear_exception_oop_and_pc();
bool recursive_exception = false;
continuation = SharedRuntime::compute_compiled_exc_handler(cm, pc, exception, false, false, recursive_exception);
// If an exception was thrown during exception dispatch, the exception oop may have changed
current->set_exception_oop(exception());
current->set_exception_pc(pc);
// The exception cache is used only for non-implicit exceptions
// Update the exception cache only when another exception did
// occur during the computation of the compiled exception handler
// (e.g., when loading the class of the catch type).
// Checking for exception oop equality is not
// sufficient because some exceptions are pre-allocated and reused.
if (continuation != NULL && !recursive_exception && !SharedRuntime::deopt_blob()->contains(continuation)) {
cm->add_handler_for_exception_and_pc(exception, pc, continuation);
}
}
// Set flag if return address is a method handle call site.
current->set_is_method_handle_return(cm->is_method_handle_return(pc));
if (log_is_enabled(Info, exceptions)) {
ResourceMark rm;
log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
" for exception thrown at PC " PTR_FORMAT,
p2i(current), p2i(continuation), p2i(pc));
}
return continuation;
JRT_END
// Enter this method from compiled code only if there is a Java exception handler
// in the method handling the exception.
// We are entering here from exception stub. We don't do a normal VM transition here.
// We do it in a helper. This is so we can check to see if the nmethod we have just
// searched for an exception handler has been deoptimized in the meantime.
address JVMCIRuntime::exception_handler_for_pc(JavaThread* current) {
oop exception = current->exception_oop();
address pc = current->exception_pc();
// Still in Java mode
DEBUG_ONLY(NoHandleMark nhm);
CompiledMethod* cm = NULL;
address continuation = NULL;
{
// Enter VM mode by calling the helper
ResetNoHandleMark rnhm;
continuation = exception_handler_for_pc_helper(current, exception, pc, cm);
}
// Back in JAVA, use no oops DON'T safepoint
// Now check to see if the compiled method we were called from is now deoptimized.
// If so we must return to the deopt blob and deoptimize the nmethod
if (cm != NULL && caller_is_deopted()) {
continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
}
assert(continuation != NULL, "no handler found");
return continuation;
}
JRT_BLOCK_ENTRY(void, JVMCIRuntime::monitorenter(JavaThread* current, oopDesc* obj, BasicLock* lock))
SharedRuntime::monitor_enter_helper(obj, lock, current);
JRT_END
JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* current, oopDesc* obj, BasicLock* lock))
assert(current == JavaThread::current(), "pre-condition");
assert(current->last_Java_sp(), "last_Java_sp must be set");
assert(oopDesc::is_oop(obj), "invalid lock object pointer dected");
SharedRuntime::monitor_exit_helper(obj, lock, current);
JRT_END
// Object.notify() fast path, caller does slow path
JRT_LEAF(jboolean, JVMCIRuntime::object_notify(JavaThread* current, oopDesc* obj))
assert(current == JavaThread::current(), "pre-condition");
// Very few notify/notifyAll operations find any threads on the waitset, so
// the dominant fast-path is to simply return.
// Relatedly, it's critical that notify/notifyAll be fast in order to
// reduce lock hold times.
if (!SafepointSynchronize::is_synchronizing()) {
if (ObjectSynchronizer::quick_notify(obj, current, false)) {
return true;
}
}
return false; // caller must perform slow path
JRT_END
// Object.notifyAll() fast path, caller does slow path
JRT_LEAF(jboolean, JVMCIRuntime::object_notifyAll(JavaThread* current, oopDesc* obj))
assert(current == JavaThread::current(), "pre-condition");
if (!SafepointSynchronize::is_synchronizing() ) {
if (ObjectSynchronizer::quick_notify(obj, current, true)) {
return true;
}
}
return false; // caller must perform slow path
JRT_END
JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_and_post_jvmti_exception(JavaThread* current, const char* exception, const char* message))
JRT_BLOCK;
TempNewSymbol symbol = SymbolTable::new_symbol(exception);
SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
JRT_BLOCK_END;
return caller_is_deopted();
JRT_END
JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_klass_external_name_exception(JavaThread* current, const char* exception, Klass* klass))
JRT_BLOCK;
ResourceMark rm(current);
TempNewSymbol symbol = SymbolTable::new_symbol(exception);
SharedRuntime::throw_and_post_jvmti_exception(current, symbol, klass->external_name());
JRT_BLOCK_END;
return caller_is_deopted();
JRT_END
JRT_BLOCK_ENTRY(int, JVMCIRuntime::throw_class_cast_exception(JavaThread* current, const char* exception, Klass* caster_klass, Klass* target_klass))
JRT_BLOCK;
ResourceMark rm(current);
const char* message = SharedRuntime::generate_class_cast_message(caster_klass, target_klass);
TempNewSymbol symbol = SymbolTable::new_symbol(exception);
SharedRuntime::throw_and_post_jvmti_exception(current, symbol, message);
JRT_BLOCK_END;
return caller_is_deopted();
JRT_END
class ArgumentPusher : public SignatureIterator {
protected:
JavaCallArguments* _jca;
jlong _argument;
bool _pushed;
jlong next_arg() {
guarantee(!_pushed, "one argument");
_pushed = true;
return _argument;
}
float next_float() {
guarantee(!_pushed, "one argument");
_pushed = true;
jvalue v;
v.i = (jint) _argument;
return v.f;
}
double next_double() {
guarantee(!_pushed, "one argument");
_pushed = true;
jvalue v;
v.j = _argument;
return v.d;
}
Handle next_object() {
guarantee(!_pushed, "one argument");
_pushed = true;
return Handle(Thread::current(), cast_to_oop(_argument));
}
public:
ArgumentPusher(Symbol* signature, JavaCallArguments* jca, jlong argument) : SignatureIterator(signature) {
this->_return_type = T_ILLEGAL;
_jca = jca;
_argument = argument;
_pushed = false;
do_parameters_on(this);
}
void do_type(BasicType type) {
switch (type) {
case T_OBJECT:
case T_ARRAY: _jca->push_oop(next_object()); break;
case T_BOOLEAN: _jca->push_int((jboolean) next_arg()); break;
case T_CHAR: _jca->push_int((jchar) next_arg()); break;
case T_SHORT: _jca->push_int((jint) next_arg()); break;
case T_BYTE: _jca->push_int((jbyte) next_arg()); break;
case T_INT: _jca->push_int((jint) next_arg()); break;
case T_LONG: _jca->push_long((jlong) next_arg()); break;
case T_FLOAT: _jca->push_float(next_float()); break;
case T_DOUBLE: _jca->push_double(next_double()); break;
default: fatal("Unexpected type %s", type2name(type));
}
}
};
JRT_ENTRY(jlong, JVMCIRuntime::invoke_static_method_one_arg(JavaThread* current, Method* method, jlong argument))
ResourceMark rm;
HandleMark hm(current);
methodHandle mh(current, method);
if (mh->size_of_parameters() > 1 && !mh->is_static()) {
THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Invoked method must be static and take at most one argument");
}
Symbol* signature = mh->signature();
JavaCallArguments jca(mh->size_of_parameters());
ArgumentPusher jap(signature, &jca, argument);
BasicType return_type = jap.return_type();
JavaValue result(return_type);
JavaCalls::call(&result, mh, &jca, CHECK_0);
if (return_type == T_VOID) {
return 0;
} else if (return_type == T_OBJECT || return_type == T_ARRAY) {
current->set_vm_result(result.get_oop());
return 0;
} else {
jvalue *value = (jvalue *) result.get_value_addr();
// Narrow the value down if required (Important on big endian machines)
switch (return_type) {
case T_BOOLEAN:
return (jboolean) value->i;
case T_BYTE:
return (jbyte) value->i;
case T_CHAR:
return (jchar) value->i;
case T_SHORT:
return (jshort) value->i;
case T_INT:
case T_FLOAT:
return value->i;
case T_LONG:
case T_DOUBLE:
return value->j;
default:
fatal("Unexpected type %s", type2name(return_type));
return 0;
}
}
JRT_END
JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, bool as_string, bool newline))
ttyLocker ttyl;
if (obj == NULL) {
tty->print("NULL");
} else if (oopDesc::is_oop_or_null(obj, true) && (!as_string || !java_lang_String::is_instance(obj))) {
if (oopDesc::is_oop_or_null(obj, true)) {
char buf[O_BUFLEN];
tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj));
} else {
tty->print(INTPTR_FORMAT, p2i(obj));
}
} else {
ResourceMark rm;
assert(obj != NULL && java_lang_String::is_instance(obj), "must be");
char *buf = java_lang_String::as_utf8_string(obj);
tty->print_raw(buf);
}
if (newline) {
tty->cr();
}
JRT_END
#if INCLUDE_G1GC
void JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj) {
G1BarrierSetRuntime::write_ref_field_pre_entry(obj, thread);
}
void JVMCIRuntime::write_barrier_post(JavaThread* thread, volatile CardValue* card_addr) {
G1BarrierSetRuntime::write_ref_field_post_entry(card_addr, thread);
}
#endif // INCLUDE_G1GC
JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child))
bool ret = true;
if(!Universe::heap()->is_in(parent)) {
tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent));
parent->print();
ret=false;
}
if(!Universe::heap()->is_in(child)) {
tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child));
child->print();
ret=false;
}
return (jint)ret;
JRT_END
JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* current, jlong where, jlong format, jlong value))
ResourceMark rm(current);
const char *error_msg = where == 0L ? "" : (char*) (address) where;
char *detail_msg = NULL;
if (format != 0L) {
const char* buf = (char*) (address) format;
size_t detail_msg_length = strlen(buf) * 2;
detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length);
jio_snprintf(detail_msg, detail_msg_length, buf, value);
}
report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg);
JRT_END
JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread))
oop exception = thread->exception_oop();
assert(exception != NULL, "npe");
thread->set_exception_oop(NULL);
thread->set_exception_pc(0);
return exception;
JRT_END
PRAGMA_DIAG_PUSH
PRAGMA_FORMAT_NONLITERAL_IGNORED
JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, const char* format, jlong v1, jlong v2, jlong v3))
ResourceMark rm;
tty->print(format, v1, v2, v3);
JRT_END
PRAGMA_DIAG_POP
static void decipher(jlong v, bool ignoreZero) {
if (v != 0 || !ignoreZero) {
void* p = (void *)(address) v;
CodeBlob* cb = CodeCache::find_blob(p);
if (cb) {
if (cb->is_nmethod()) {
char buf[O_BUFLEN];
tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod_or_null()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin()));
return;
}
cb->print_value_on(tty);
return;
}
if (Universe::heap()->is_in(p)) {
oop obj = cast_to_oop(p);
obj->print_value_on(tty);
return;
}
tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v);
}
}
PRAGMA_DIAG_PUSH
PRAGMA_FORMAT_NONLITERAL_IGNORED
JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3))
ResourceMark rm;
const char *buf = (const char*) (address) format;
if (vmError) {
if (buf != NULL) {
fatal(buf, v1, v2, v3);
} else {
fatal("");
}
} else if (buf != NULL) {
tty->print(buf, v1, v2, v3);
} else {
assert(v2 == 0, "v2 != 0");
assert(v3 == 0, "v3 != 0");
decipher(v1, false);
}
JRT_END
PRAGMA_DIAG_POP
JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline))
union {
jlong l;
jdouble d;
jfloat f;
} uu;
uu.l = value;
switch (typeChar) {
case 'Z': tty->print(value == 0 ? "false" : "true"); break;
case 'B': tty->print("%d", (jbyte) value); break;
case 'C': tty->print("%c", (jchar) value); break;
case 'S': tty->print("%d", (jshort) value); break;
case 'I': tty->print("%d", (jint) value); break;
case 'F': tty->print("%f", uu.f); break;
case 'J': tty->print(JLONG_FORMAT, value); break;
case 'D': tty->print("%lf", uu.d); break;
default: assert(false, "unknown typeChar"); break;
}
if (newline) {
tty->cr();
}
JRT_END
JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* current, oopDesc* obj))
return (jint) obj->identity_hash();
JRT_END
JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* current, int value))
deopt_caller();
return (jint) value;
JRT_END
// private static JVMCIRuntime JVMCI.initializeRuntime()
JVM_ENTRY_NO_ENV(jobject, JVM_GetJVMCIRuntime(JNIEnv *env, jclass c))
JNI_JVMCIENV(thread, env);
if (!EnableJVMCI) {
JVMCI_THROW_MSG_NULL(InternalError, "JVMCI is not enabled");
}
JVMCIENV->runtime()->initialize_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
JVMCIObject runtime = JVMCIENV->runtime()->get_HotSpotJVMCIRuntime(JVMCI_CHECK_NULL);
return JVMCIENV->get_jobject(runtime);
JVM_END
void JVMCIRuntime::call_getCompiler(TRAPS) {
THREAD_JVMCIENV(JavaThread::current());
JVMCIObject jvmciRuntime = JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_CHECK);
initialize(JVMCI_CHECK);
JVMCIENV->call_HotSpotJVMCIRuntime_getCompiler(jvmciRuntime, JVMCI_CHECK);
}
void JVMCINMethodData::initialize(
int nmethod_mirror_index,
const char* name,
FailedSpeculation** failed_speculations)
{
_failed_speculations = failed_speculations;
_nmethod_mirror_index = nmethod_mirror_index;
if (name != NULL) {
_has_name = true;
char* dest = (char*) this->name();
strcpy(dest, name);
} else {
_has_name = false;
}
}
void JVMCINMethodData::add_failed_speculation(nmethod* nm, jlong speculation) {
jlong index = speculation >> JVMCINMethodData::SPECULATION_LENGTH_BITS;
guarantee(index >= 0 && index <= max_jint, "Encoded JVMCI speculation index is not a positive Java int: " INTPTR_FORMAT, index);
int length = speculation & JVMCINMethodData::SPECULATION_LENGTH_MASK;
if (index + length > (uint) nm->speculations_size()) {
fatal(INTPTR_FORMAT "[index: " JLONG_FORMAT ", length: %d out of bounds wrt encoded speculations of length %u", speculation, index, length, nm->speculations_size());
}
address data = nm->speculations_begin() + index;
FailedSpeculation::add_failed_speculation(nm, _failed_speculations, data, length);
}
oop JVMCINMethodData::get_nmethod_mirror(nmethod* nm, bool phantom_ref) {
if (_nmethod_mirror_index == -1) {
return NULL;
}
if (phantom_ref) {
return nm->oop_at_phantom(_nmethod_mirror_index);
} else {
return nm->oop_at(_nmethod_mirror_index);
}
}
void JVMCINMethodData::set_nmethod_mirror(nmethod* nm, oop new_mirror) {
assert(_nmethod_mirror_index != -1, "cannot set JVMCI mirror for nmethod");
oop* addr = nm->oop_addr_at(_nmethod_mirror_index);
assert(new_mirror != NULL, "use clear_nmethod_mirror to clear the mirror");
assert(*addr == NULL, "cannot overwrite non-null mirror");
*addr = new_mirror;
// Since we've patched some oops in the nmethod,
// (re)register it with the heap.
MutexLocker ml(CodeCache_lock, Mutex::_no_safepoint_check_flag);
Universe::heap()->register_nmethod(nm);
}
void JVMCINMethodData::invalidate_nmethod_mirror(nmethod* nm) {
oop nmethod_mirror = get_nmethod_mirror(nm, /* phantom_ref */ false);
if (nmethod_mirror == NULL) {
return;
}
// Update the values in the mirror if it still refers to nm.
// We cannot use JVMCIObject to wrap the mirror as this is called
// during GC, forbidding the creation of JNIHandles.
JVMCIEnv* jvmciEnv = NULL;
nmethod* current = (nmethod*) HotSpotJVMCI::InstalledCode::address(jvmciEnv, nmethod_mirror);
if (nm == current) {
if (nm->is_unloading()) {
// Break the link from the mirror to nm such that
// future invocations via the mirror will result in
// an InvalidInstalledCodeException.
HotSpotJVMCI::InstalledCode::set_address(jvmciEnv, nmethod_mirror, 0);
HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
} else if (nm->is_not_entrant()) {
// Zero the entry point so any new invocation will fail but keep
// the address link around that so that existing activations can
// be deoptimized via the mirror (i.e. JVMCIEnv::invalidate_installed_code).
HotSpotJVMCI::InstalledCode::set_entryPoint(jvmciEnv, nmethod_mirror, 0);
HotSpotJVMCI::HotSpotInstalledCode::set_codeStart(jvmciEnv, nmethod_mirror, 0);
}
}
if (_nmethod_mirror_index != -1 && nm->is_unloading()) {
// Drop the reference to the nmethod mirror object but don't clear the actual oop reference. Otherwise
// it would appear that the nmethod didn't need to be unloaded in the first place.
_nmethod_mirror_index = -1;
}
}
// Handles to objects in the Hotspot heap.
static OopStorage* object_handles() {
return Universe::vm_global();
}
jlong JVMCIRuntime::make_oop_handle(const Handle& obj) {
assert(!Universe::heap()->is_gc_active(), "can't extend the root set during GC");
assert(oopDesc::is_oop(obj()), "not an oop");
oop* ptr = OopHandle(object_handles(), obj()).ptr_raw();
MutexLocker ml(_lock);
_oop_handles.append(ptr);
return (jlong) ptr;
}
int JVMCIRuntime::release_and_clear_oop_handles() {
guarantee(_num_attached_threads == cannot_be_attached, "only call during JVMCI runtime shutdown");
int released = release_cleared_oop_handles();
if (_oop_handles.length() != 0) {
for (int i = 0; i < _oop_handles.length(); i++) {
oop* oop_ptr = _oop_handles.at(i);
guarantee(oop_ptr != nullptr, "release_cleared_oop_handles left null entry in _oop_handles");
guarantee(*oop_ptr != nullptr, "unexpected cleared handle");
// Satisfy OopHandles::release precondition that all
// handles being released are null.
NativeAccess<>::oop_store(oop_ptr, (oop) NULL);
}
// Do the bulk release
object_handles()->release(_oop_handles.adr_at(0), _oop_handles.length());
released += _oop_handles.length();
}
_oop_handles.clear();
return released;
}
static bool is_referent_non_null(oop* handle) {
return handle != nullptr && *handle != nullptr;
}
// Swaps the elements in `array` at index `a` and index `b`
static void swap(GrowableArray<oop*>* array, int a, int b) {
oop* tmp = array->at(a);
array->at_put(a, array->at(b));
array->at_put(b, tmp);
}
int JVMCIRuntime::release_cleared_oop_handles() {
// Despite this lock, it's possible for another thread
// to clear a handle's referent concurrently (e.g., a thread
// executing IndirectHotSpotObjectConstantImpl.clear()).
// This is benign - it means there can still be cleared
// handles in _oop_handles when this method returns.
MutexLocker ml(_lock);
int next = 0;
if (_oop_handles.length() != 0) {
// Key for _oop_handles contents in example below:
// H: handle with non-null referent
// h: handle with clear (i.e., null) referent
// -: null entry
// Shuffle all handles with non-null referents to the front of the list
// Example: Before: 0HHh-Hh-
// After: HHHh--h-
for (int i = 0; i < _oop_handles.length(); i++) {
oop* handle = _oop_handles.at(i);
if (is_referent_non_null(handle)) {
if (i != next && !is_referent_non_null(_oop_handles.at(next))) {
// Swap elements at index `next` and `i`
swap(&_oop_handles, next, i);
}
next++;
}
}
// `next` is now the index of the first null handle or handle with a null referent
int num_alive = next;
// Shuffle all null handles to the end of the list
// Example: Before: HHHh--h-
// After: HHHhh---
// num_alive: 3
for (int i = next; i < _oop_handles.length(); i++) {
oop* handle = _oop_handles.at(i);
if (handle != nullptr) {
if (i != next && _oop_handles.at(next) == nullptr) {
// Swap elements at index `next` and `i`
swap(&_oop_handles, next, i);
}
next++;
}
}
int to_release = next - num_alive;
// `next` is now the index of the first null handle
// Example: to_release: 2
// Bulk release the handles with a null referent
object_handles()->release(_oop_handles.adr_at(num_alive), to_release);
// Truncate oop handles to only those with a non-null referent
JVMCI_event_1("compacted oop handles in JVMCI runtime %d from %d to %d", _id, _oop_handles.length(), num_alive);
_oop_handles.trunc_to(num_alive);
// Example: HHH
return to_release;
}
return 0;
}
jmetadata JVMCIRuntime::allocate_handle(const methodHandle& handle) {
MutexLocker ml(_lock);
return _metadata_handles->allocate_handle(handle);
}
jmetadata JVMCIRuntime::allocate_handle(const constantPoolHandle& handle) {
MutexLocker ml(_lock);
return _metadata_handles->allocate_handle(handle);
}
void JVMCIRuntime::release_handle(jmetadata handle) {
MutexLocker ml(_lock);
_metadata_handles->chain_free_list(handle);
}
// Function for redirecting shared library JavaVM output to tty
static void _log(const char* buf, size_t count) {
tty->write((char*) buf, count);
}
// Function for redirecting shared library JavaVM fatal error data to a log file.
// The log file is opened on first call to this function.
static void _fatal_log(const char* buf, size_t count) {
JVMCI::fatal_log(buf, count);
}
// Function for shared library JavaVM to flush tty
static void _flush_log() {
tty->flush();
}
// Function for shared library JavaVM to exit HotSpot on a fatal error
static void _fatal() {
Thread* thread = Thread::current_or_null_safe();
if (thread != nullptr && thread->is_Java_thread()) {
JavaThread* jthread = (JavaThread*) thread;
JVMCIRuntime* runtime = jthread->libjvmci_runtime();
if (runtime != nullptr) {
int javaVM_id = runtime->get_shared_library_javavm_id();
fatal("Fatal error in JVMCI shared library JavaVM[%d] owned by JVMCI runtime %d", javaVM_id, runtime->id());
}
}
intx current_thread_id = os::current_thread_id();
fatal("thread " INTX_FORMAT ": Fatal error in JVMCI shared library", current_thread_id);
}
JVMCIRuntime::JVMCIRuntime(JVMCIRuntime* next, int id, bool for_compile_broker) :
_init_state(uninitialized),
_shared_library_javavm(nullptr),
_shared_library_javavm_id(0),
_id(id),
_next(next),
_metadata_handles(new MetadataHandles()),
_oop_handles(100, mtJVMCI),
_num_attached_threads(0),
_for_compile_broker(for_compile_broker)
{
if (id == -1) {
_lock = JVMCIRuntime_lock;
} else {
stringStream lock_name;
lock_name.print("%s@%d", JVMCIRuntime_lock->name(), id);
Mutex::Rank lock_rank = DEBUG_ONLY(JVMCIRuntime_lock->rank()) NOT_DEBUG(Mutex::safepoint);
_lock = new PaddedMonitor(lock_rank, lock_name.as_string(/*c_heap*/true));
}
JVMCI_event_1("created new %s JVMCI runtime %d (" PTR_FORMAT ")",
id == -1 ? "Java" : for_compile_broker ? "CompileBroker" : "Compiler", id, p2i(this));
}
JVMCIRuntime* JVMCIRuntime::select_runtime_in_shutdown(JavaThread* thread) {
assert(JVMCI_lock->owner() == thread, "must be");
// When shutting down, use the first available runtime.
for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
if (runtime->_num_attached_threads != cannot_be_attached) {
runtime->pre_attach_thread(thread);
JVMCI_event_1("using pre-existing JVMCI runtime %d in shutdown", runtime->id());
return runtime;
}
}
// Lazily initialize JVMCI::_shutdown_compiler_runtime. Safe to
// do here since JVMCI_lock is locked.
if (JVMCI::_shutdown_compiler_runtime == nullptr) {
JVMCI::_shutdown_compiler_runtime = new JVMCIRuntime(nullptr, -2, true);
}
JVMCIRuntime* runtime = JVMCI::_shutdown_compiler_runtime;
JVMCI_event_1("using reserved shutdown JVMCI runtime %d", runtime->id());
return runtime;
}
JVMCIRuntime* JVMCIRuntime::select_runtime(JavaThread* thread, JVMCIRuntime* skip, int* count) {
assert(JVMCI_lock->owner() == thread, "must be");
bool for_compile_broker = thread->is_Compiler_thread();
for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
if (count != nullptr) {
(*count)++;
}
if (for_compile_broker == runtime->_for_compile_broker) {
int count = runtime->_num_attached_threads;
if (count == cannot_be_attached || runtime == skip) {
// Cannot attach to rt
continue;
}
// If selecting for repacking, ignore a runtime without an existing JavaVM
if (skip != nullptr && !runtime->has_shared_library_javavm()) {
continue;
}
// Select first runtime with sufficient capacity
if (count < (int) JVMCIThreadsPerNativeLibraryRuntime) {
runtime->pre_attach_thread(thread);
return runtime;
}
}
}
return nullptr;
}
JVMCIRuntime* JVMCIRuntime::select_or_create_runtime(JavaThread* thread) {
assert(JVMCI_lock->owner() == thread, "must be");
int id = 0;
JVMCIRuntime* runtime;
if (JVMCI::using_singleton_shared_library_runtime()) {
runtime = JVMCI::_compiler_runtimes;
guarantee(runtime != nullptr, "must be");
while (runtime->_num_attached_threads == cannot_be_attached) {
// Since there is only a singleton JVMCIRuntime, we
// need to wait for it to be available for attaching.
JVMCI_lock->wait();
}
runtime->pre_attach_thread(thread);
} else {
runtime = select_runtime(thread, nullptr, &id);
}
if (runtime == nullptr) {
runtime = new JVMCIRuntime(JVMCI::_compiler_runtimes, id, thread->is_Compiler_thread());
JVMCI::_compiler_runtimes = runtime;
runtime->pre_attach_thread(thread);
}
return runtime;
}
JVMCIRuntime* JVMCIRuntime::for_thread(JavaThread* thread) {
assert(thread->libjvmci_runtime() == nullptr, "must be");
// Find the runtime with fewest attached threads
JVMCIRuntime* runtime = nullptr;
{
MutexLocker locker(JVMCI_lock);
runtime = JVMCI::in_shutdown() ? select_runtime_in_shutdown(thread) : select_or_create_runtime(thread);
}
runtime->attach_thread(thread);
return runtime;
}
const char* JVMCIRuntime::attach_shared_library_thread(JavaThread* thread, JavaVM* javaVM) {
MutexLocker locker(JVMCI_lock);
for (JVMCIRuntime* runtime = JVMCI::_compiler_runtimes; runtime != nullptr; runtime = runtime->_next) {
if (runtime->_shared_library_javavm == javaVM) {
if (runtime->_num_attached_threads == cannot_be_attached) {
return "Cannot attach to JVMCI runtime that is shutting down";
}
runtime->pre_attach_thread(thread);
runtime->attach_thread(thread);
return nullptr;
}
}
return "Cannot find JVMCI runtime";
}
void JVMCIRuntime::pre_attach_thread(JavaThread* thread) {
assert(JVMCI_lock->owner() == thread, "must be");
_num_attached_threads++;
}
void JVMCIRuntime::attach_thread(JavaThread* thread) {
assert(thread->libjvmci_runtime() == nullptr, "must be");
thread->set_libjvmci_runtime(this);
guarantee(this == JVMCI::_shutdown_compiler_runtime ||
_num_attached_threads > 0,
"missing reservation in JVMCI runtime %d: _num_attached_threads=%d", _id, _num_attached_threads);
JVMCI_event_1("attached to JVMCI runtime %d%s", _id, JVMCI::in_shutdown() ? " [in JVMCI shutdown]" : "");
}
void JVMCIRuntime::repack(JavaThread* thread) {
JVMCIRuntime* new_runtime = nullptr;
{
MutexLocker locker(JVMCI_lock);
if (JVMCI::using_singleton_shared_library_runtime() || _num_attached_threads != 1 || JVMCI::in_shutdown()) {
return;
}
new_runtime = select_runtime(thread, this, nullptr);
}
if (new_runtime != nullptr) {
JVMCI_event_1("Moving thread from JVMCI runtime %d to JVMCI runtime %d (%d attached)", _id, new_runtime->_id, new_runtime->_num_attached_threads - 1);
detach_thread(thread, "moving thread to another JVMCI runtime");
new_runtime->attach_thread(thread);
}
}
bool JVMCIRuntime::detach_thread(JavaThread* thread, const char* reason, bool can_destroy_javavm) {
if (this == JVMCI::_shutdown_compiler_runtime || JVMCI::in_shutdown()) {
// Do minimal work when shutting down JVMCI
thread->set_libjvmci_runtime(nullptr);
return false;
}
bool should_shutdown;
bool destroyed_javavm = false;
{
MutexLocker locker(JVMCI_lock);
_num_attached_threads--;
JVMCI_event_1("detaching from JVMCI runtime %d: %s (%d other threads still attached)", _id, reason, _num_attached_threads);
should_shutdown = _num_attached_threads == 0 && !JVMCI::in_shutdown();
if (should_shutdown && !can_destroy_javavm) {
// If it's not possible to destroy the JavaVM on this thread then the VM must
// not be shutdown. This can happen when a shared library thread is the last
// thread to detach from a shared library JavaVM (e.g. GraalServiceThread).
JVMCI_event_1("Cancelled shut down of JVMCI runtime %d", _id);
should_shutdown = false;
}
if (should_shutdown) {
// Prevent other threads from attaching to this runtime
// while it is shutting down and destroying its JavaVM
_num_attached_threads = cannot_be_attached;
}
}
if (should_shutdown) {
// Release the JavaVM resources associated with this
// runtime once there are no threads attached to it.
shutdown();
if (can_destroy_javavm) {
destroyed_javavm = destroy_shared_library_javavm();
if (destroyed_javavm) {
// Can release all handles now that there's no code executing
// that could be using them. Handles for the Java JVMCI runtime
// are never released as we cannot guarantee all compiler threads
// using it have been stopped.
int released = release_and_clear_oop_handles();
JVMCI_event_1("releasing handles for JVMCI runtime %d: oop handles=%d, metadata handles={total=%d, live=%d, blocks=%d}",
_id,
released,
_metadata_handles->num_handles(),
_metadata_handles->num_handles() - _metadata_handles->num_free_handles(),
_metadata_handles->num_blocks());
// No need to acquire _lock since this is the only thread accessing this runtime
_metadata_handles->clear();
}
}
// Allow other threads to attach to this runtime now
MutexLocker locker(JVMCI_lock);
_num_attached_threads = 0;
if (JVMCI::using_singleton_shared_library_runtime()) {
// Notify any thread waiting to attach to the
// singleton JVMCIRuntime
JVMCI_lock->notify();
}
}
thread->set_libjvmci_runtime(nullptr);
JVMCI_event_1("detached from JVMCI runtime %d", _id);
return destroyed_javavm;
}
JNIEnv* JVMCIRuntime::init_shared_library_javavm() {
MutexLocker locker(_lock);
JavaVM* javaVM = _shared_library_javavm;
if (javaVM == nullptr) {
char* sl_path;
void* sl_handle = JVMCI::get_shared_library(sl_path, true);
jint (*JNI_CreateJavaVM)(JavaVM **pvm, void **penv, void *args);
typedef jint (*JNI_CreateJavaVM_t)(JavaVM **pvm, void **penv, void *args);
JNI_CreateJavaVM = CAST_TO_FN_PTR(JNI_CreateJavaVM_t, os::dll_lookup(sl_handle, "JNI_CreateJavaVM"));
if (JNI_CreateJavaVM == nullptr) {
fatal("Unable to find JNI_CreateJavaVM in %s", sl_path);
}
ResourceMark rm;
JavaVMInitArgs vm_args;
vm_args.version = JNI_VERSION_1_2;
vm_args.ignoreUnrecognized = JNI_TRUE;
JavaVMOption options[5];
jlong javaVM_id = 0;
// Protocol: JVMCI shared library JavaVM should support a non-standard "_javavm_id"
// option whose extraInfo info field is a pointer to which a unique id for the
// JavaVM should be written.
options[0].optionString = (char*) "_javavm_id";
options[0].extraInfo = &javaVM_id;
options[1].optionString = (char*) "_log";
options[1].extraInfo = (void*) _log;
options[2].optionString = (char*) "_flush_log";
options[2].extraInfo = (void*) _flush_log;
options[3].optionString = (char*) "_fatal";
options[3].extraInfo = (void*) _fatal;
options[4].optionString = (char*) "_fatal_log";
options[4].extraInfo = (void*) _fatal_log;
vm_args.version = JNI_VERSION_1_2;
vm_args.options = options;
vm_args.nOptions = sizeof(options) / sizeof(JavaVMOption);
JNIEnv* env = nullptr;
int result = (*JNI_CreateJavaVM)(&javaVM, (void**) &env, &vm_args);
if (result == JNI_OK) {
guarantee(env != nullptr, "missing env");
_shared_library_javavm_id = javaVM_id;
_shared_library_javavm = javaVM;
JVMCI_event_1("created JavaVM[%ld]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
return env;
} else {
fatal("JNI_CreateJavaVM failed with return value %d", result);
}
}
return nullptr;
}
void JVMCIRuntime::init_JavaVM_info(jlongArray info, JVMCI_TRAPS) {
if (info != nullptr) {
typeArrayOop info_oop = (typeArrayOop) JNIHandles::resolve(info);
if (info_oop->length() < 4) {
JVMCI_THROW_MSG(ArrayIndexOutOfBoundsException, err_msg("%d < 4", info_oop->length()));
}
JavaVM* javaVM = _shared_library_javavm;
info_oop->long_at_put(0, (jlong) (address) javaVM);
info_oop->long_at_put(1, (jlong) (address) javaVM->functions->reserved0);
info_oop->long_at_put(2, (jlong) (address) javaVM->functions->reserved1);
info_oop->long_at_put(3, (jlong) (address) javaVM->functions->reserved2);
}
}
#define JAVAVM_CALL_BLOCK \
guarantee(thread != nullptr && _shared_library_javavm != nullptr, "npe"); \
ThreadToNativeFromVM ttnfv(thread); \
JavaVM* javavm = _shared_library_javavm;
jint JVMCIRuntime::AttachCurrentThread(JavaThread* thread, void **penv, void *args) {
JAVAVM_CALL_BLOCK
return javavm->AttachCurrentThread(penv, args);
}
jint JVMCIRuntime::AttachCurrentThreadAsDaemon(JavaThread* thread, void **penv, void *args) {
JAVAVM_CALL_BLOCK
return javavm->AttachCurrentThreadAsDaemon(penv, args);
}
jint JVMCIRuntime::DetachCurrentThread(JavaThread* thread) {
JAVAVM_CALL_BLOCK
return javavm->DetachCurrentThread();
}
jint JVMCIRuntime::GetEnv(JavaThread* thread, void **penv, jint version) {
JAVAVM_CALL_BLOCK
return javavm->GetEnv(penv, version);
}
#undef JAVAVM_CALL_BLOCK \
void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
if (is_HotSpotJVMCIRuntime_initialized()) {
if (JVMCIENV->is_hotspot() && UseJVMCINativeLibrary) {
JVMCI_THROW_MSG(InternalError, "JVMCI has already been enabled in the JVMCI shared library");
}
}
initialize(JVMCI_CHECK);
// This should only be called in the context of the JVMCI class being initialized
JVMCIObject result = JVMCIENV->call_HotSpotJVMCIRuntime_runtime(JVMCI_CHECK);
result = JVMCIENV->make_global(result);
OrderAccess::storestore(); // Ensure handle is fully constructed before publishing
_HotSpotJVMCIRuntime_instance = result;
JVMCI::_is_initialized = true;
}
JVMCIRuntime::InitState JVMCIRuntime::_shared_library_javavm_refs_init_state = JVMCIRuntime::uninitialized;
JVMCIRuntime::InitState JVMCIRuntime::_hotspot_javavm_refs_init_state = JVMCIRuntime::uninitialized;
class JavaVMRefsInitialization: public StackObj {
JVMCIRuntime::InitState *_state;
int _id;
public:
JavaVMRefsInitialization(JVMCIRuntime::InitState *state, int id) {
_state = state;
_id = id;
// All classes, methods and fields in the JVMCI shared library
// are in the read-only part of the image. As such, these
// values (and any global handle derived from them via NewGlobalRef)
// are the same for all JavaVM instances created in the
// shared library which means they only need to be initialized
// once. In non-product mode, we check this invariant.
// See com.oracle.svm.jni.JNIImageHeapHandles.
// The same is true for Klass* and field offsets in HotSpotJVMCI.
if (*state == JVMCIRuntime::uninitialized DEBUG_ONLY( || true)) {
*state = JVMCIRuntime::being_initialized;
JVMCI_event_1("initializing JavaVM references in JVMCI runtime %d", id);
} else {
while (*state != JVMCIRuntime::fully_initialized) {
JVMCI_event_1("waiting for JavaVM references initialization in JVMCI runtime %d", id);
JVMCI_lock->wait();
}
JVMCI_event_1("done waiting for JavaVM references initialization in JVMCI runtime %d", id);
}
}
~JavaVMRefsInitialization() {
if (*_state == JVMCIRuntime::being_initialized) {
*_state = JVMCIRuntime::fully_initialized;
JVMCI_event_1("initialized JavaVM references in JVMCI runtime %d", _id);
JVMCI_lock->notify_all();
}
}
bool should_init() {
return *_state == JVMCIRuntime::being_initialized;
}
};
void JVMCIRuntime::initialize(JVMCI_TRAPS) {
// Check first without _lock
if (_init_state == fully_initialized) {
return;
}
JavaThread* THREAD = JavaThread::current();
int properties_len = 0;
jbyte* properties = NULL;
MutexLocker locker(_lock);
// Check again under _lock
if (_init_state == fully_initialized) {
return;
}
while (_init_state == being_initialized) {
JVMCI_event_1("waiting for initialization of JVMCI runtime %d", _id);
_lock->wait();
if (_init_state == fully_initialized) {
JVMCI_event_1("done waiting for initialization of JVMCI runtime %d", _id);
return;
}
}
JVMCI_event_1("initializing JVMCI runtime %d", _id);
_init_state = being_initialized;
{
MutexUnlocker unlock(_lock);
HandleMark hm(THREAD);
ResourceMark rm(THREAD);
{
MutexLocker lock_jvmci(JVMCI_lock);
if (JVMCIENV->is_hotspot()) {
JavaVMRefsInitialization initialization(&_hotspot_javavm_refs_init_state, _id);
if (initialization.should_init()) {
MutexUnlocker unlock_jvmci(JVMCI_lock);
HotSpotJVMCI::compute_offsets(CHECK_EXIT);
}
} else {
JavaVMRefsInitialization initialization(&_shared_library_javavm_refs_init_state, _id);
if (initialization.should_init()) {
MutexUnlocker unlock_jvmci(JVMCI_lock);
JNIAccessMark jni(JVMCIENV, THREAD);
JNIJVMCI::initialize_ids(jni.env());
if (jni()->ExceptionCheck()) {
jni()->ExceptionDescribe();
fatal("JNI exception during init");
}
// _lock is re-locked at this point
}
}
}
if (!JVMCIENV->is_hotspot()) {
JNIAccessMark jni(JVMCIENV, THREAD);
JNIJVMCI::register_natives(jni.env());
}
create_jvmci_primitive_type(T_BOOLEAN, JVMCI_CHECK_EXIT_((void)0));
create_jvmci_primitive_type(T_BYTE, JVMCI_CHECK_EXIT_((void)0));
create_jvmci_primitive_type(T_CHAR, JVMCI_CHECK_EXIT_((void)0));
create_jvmci_primitive_type(T_SHORT, JVMCI_CHECK_EXIT_((void)0));
create_jvmci_primitive_type(T_INT, JVMCI_CHECK_EXIT_((void)0));
create_jvmci_primitive_type(T_LONG, JVMCI_CHECK_EXIT_((void)0));
create_jvmci_primitive_type(T_FLOAT, JVMCI_CHECK_EXIT_((void)0));
create_jvmci_primitive_type(T_DOUBLE, JVMCI_CHECK_EXIT_((void)0));
create_jvmci_primitive_type(T_VOID, JVMCI_CHECK_EXIT_((void)0));
DEBUG_ONLY(CodeInstaller::verify_bci_constants(JVMCIENV);)
if (!JVMCIENV->is_hotspot()) {
Handle properties_exception;
properties = JVMCIENV->get_serialized_saved_properties(properties_len, THREAD);
if (JVMCIEnv::transfer_pending_exception_to_jni(THREAD, nullptr, JVMCIENV)) {
return;
}
JVMCIENV->copy_saved_properties(properties, properties_len, JVMCI_CHECK);
}
}
_init_state = fully_initialized;
JVMCI_event_1("initialized JVMCI runtime %d", _id);
_lock->notify_all();
}
JVMCIObject JVMCIRuntime::create_jvmci_primitive_type(BasicType type, JVMCI_TRAPS) {
JavaThread* THREAD = JavaThread::current(); // For exception macros.
// These primitive types are long lived and are created before the runtime is fully set up
// so skip registering them for scanning.
JVMCIObject mirror = JVMCIENV->get_object_constant(java_lang_Class::primitive_mirror(type), false, true);
if (JVMCIENV->is_hotspot()) {
JavaValue result(T_OBJECT);
JavaCallArguments args;
args.push_oop(Handle(THREAD, HotSpotJVMCI::resolve(mirror)));
args.push_int(type2char(type));
JavaCalls::call_static(&result, HotSpotJVMCI::HotSpotResolvedPrimitiveType::klass(), vmSymbols::fromMetaspace_name(), vmSymbols::primitive_fromMetaspace_signature(), &args, CHECK_(JVMCIObject()));
return JVMCIENV->wrap(JNIHandles::make_local(result.get_oop()));
} else {
JNIAccessMark jni(JVMCIENV);
jobject result = jni()->CallStaticObjectMethod(JNIJVMCI::HotSpotResolvedPrimitiveType::clazz(),
JNIJVMCI::HotSpotResolvedPrimitiveType_fromMetaspace_method(),
mirror.as_jobject(), type2char(type));
if (jni()->ExceptionCheck()) {
return JVMCIObject();
}
return JVMCIENV->wrap(result);
}
}
void JVMCIRuntime::initialize_JVMCI(JVMCI_TRAPS) {
if (!is_HotSpotJVMCIRuntime_initialized()) {
initialize(JVMCI_CHECK);
JVMCIENV->call_JVMCI_getRuntime(JVMCI_CHECK);
guarantee(_HotSpotJVMCIRuntime_instance.is_non_null(), "NPE in JVMCI runtime %d", _id);
}
}
JVMCIObject JVMCIRuntime::get_HotSpotJVMCIRuntime(JVMCI_TRAPS) {
initialize(JVMCI_CHECK_(JVMCIObject()));
initialize_JVMCI(JVMCI_CHECK_(JVMCIObject()));
return _HotSpotJVMCIRuntime_instance;
}
// private static void CompilerToVM.registerNatives()
JVM_ENTRY_NO_ENV(void, JVM_RegisterJVMCINatives(JNIEnv *env, jclass c2vmClass))
JNI_JVMCIENV(thread, env);
if (!EnableJVMCI) {
JVMCI_THROW_MSG(InternalError, "JVMCI is not enabled");
}
JVMCIENV->runtime()->initialize(JVMCIENV);
{
ResourceMark rm(thread);
HandleMark hm(thread);
ThreadToNativeFromVM trans(thread);
// Ensure _non_oop_bits is initialized
Universe::non_oop_word();
if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count())) {
if (!env->ExceptionCheck()) {
for (int i = 0; i < CompilerToVM::methods_count(); i++) {
if (JNI_OK != env->RegisterNatives(c2vmClass, CompilerToVM::methods + i, 1)) {
guarantee(false, "Error registering JNI method %s%s", CompilerToVM::methods[i].name, CompilerToVM::methods[i].signature);
break;
}
}
} else {
env->ExceptionDescribe();
}
guarantee(false, "Failed registering CompilerToVM native methods");
}
}
JVM_END
void JVMCIRuntime::shutdown() {
if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
JVMCI_event_1("shutting down HotSpotJVMCIRuntime for JVMCI runtime %d", _id);
JVMCIEnv __stack_jvmci_env__(JavaThread::current(), _HotSpotJVMCIRuntime_instance.is_hotspot(), __FILE__, __LINE__);
JVMCIEnv* JVMCIENV = &__stack_jvmci_env__;
JVMCIENV->call_HotSpotJVMCIRuntime_shutdown(_HotSpotJVMCIRuntime_instance);
if (_num_attached_threads == cannot_be_attached) {
// Only when no other threads are attached to this runtime
// is it safe to reset these fields.
_HotSpotJVMCIRuntime_instance = JVMCIObject();
_init_state = uninitialized;
JVMCI_event_1("shut down JVMCI runtime %d", _id);
}
}
}
bool JVMCIRuntime::destroy_shared_library_javavm() {
guarantee(_num_attached_threads == cannot_be_attached,
"cannot destroy JavaVM for JVMCI runtime %d with %d attached threads", _id, _num_attached_threads);
JavaVM* javaVM;
int javaVM_id = _shared_library_javavm_id;
{
// Exactly one thread can destroy the JavaVM
// and release the handle to it.
MutexLocker only_one(_lock);
javaVM = _shared_library_javavm;
if (javaVM != nullptr) {
_shared_library_javavm = nullptr;
_shared_library_javavm_id = 0;
}
}
if (javaVM != nullptr) {
int result;
{
// Must transition into native before calling into libjvmci
ThreadToNativeFromVM ttnfv(JavaThread::current());
result = javaVM->DestroyJavaVM();
}
if (result == JNI_OK) {
JVMCI_event_1("destroyed JavaVM[%d]@" PTR_FORMAT " for JVMCI runtime %d", javaVM_id, p2i(javaVM), _id);
} else {
warning("Non-zero result (%d) when calling JNI_DestroyJavaVM on JavaVM[%d]@" PTR_FORMAT, result, javaVM_id, p2i(javaVM));
}
return true;
}
return false;
}
void JVMCIRuntime::bootstrap_finished(TRAPS) {
if (_HotSpotJVMCIRuntime_instance.is_non_null()) {
THREAD_JVMCIENV(JavaThread::current());
JVMCIENV->call_HotSpotJVMCIRuntime_bootstrapFinished(_HotSpotJVMCIRuntime_instance, JVMCIENV);
}
}
void JVMCIRuntime::describe_pending_hotspot_exception(JavaThread* THREAD, bool clear) {
if (HAS_PENDING_EXCEPTION) {
Handle exception(THREAD, PENDING_EXCEPTION);
const char* exception_file = THREAD->exception_file();
int exception_line = THREAD->exception_line();
CLEAR_PENDING_EXCEPTION;
java_lang_Throwable::print_stack_trace(exception, tty);
// Clear and ignore any exceptions raised during printing
CLEAR_PENDING_EXCEPTION;
if (!clear) {
THREAD->set_pending_exception(exception(), exception_file, exception_line);
}
}
}
void JVMCIRuntime::fatal_exception(JVMCIEnv* JVMCIENV, const char* message) {
JavaThread* THREAD = JavaThread::current(); // For exception macros.
static volatile int report_error = 0;
if (!report_error && Atomic::cmpxchg(&report_error, 0, 1) == 0) {
// Only report an error once
tty->print_raw_cr(message);
if (JVMCIENV != NULL) {
JVMCIENV->describe_pending_exception(true);
} else {
describe_pending_hotspot_exception(THREAD, true);
}
} else {
// Allow error reporting thread to print the stack trace.
THREAD->sleep(200);
}
fatal("Fatal exception in JVMCI: %s", message);
}
// ------------------------------------------------------------------
// Note: the logic of this method should mirror the logic of
// constantPoolOopDesc::verify_constant_pool_resolve.
bool JVMCIRuntime::check_klass_accessibility(Klass* accessing_klass, Klass* resolved_klass) {
if (accessing_klass->is_objArray_klass()) {
accessing_klass = ObjArrayKlass::cast(accessing_klass)->bottom_klass();
}
if (!accessing_klass->is_instance_klass()) {
return true;
}
if (resolved_klass->is_objArray_klass()) {
// Find the element klass, if this is an array.
resolved_klass = ObjArrayKlass::cast(resolved_klass)->bottom_klass();
}
if (resolved_klass->is_instance_klass()) {
Reflection::VerifyClassAccessResults result =
Reflection::verify_class_access(accessing_klass, InstanceKlass::cast(resolved_klass), true);
return result == Reflection::ACCESS_OK;
}
return true;
}
// ------------------------------------------------------------------
Klass* JVMCIRuntime::get_klass_by_name_impl(Klass*& accessing_klass,
const constantPoolHandle& cpool,
Symbol* sym,
bool require_local) {
JVMCI_EXCEPTION_CONTEXT;
// Now we need to check the SystemDictionary
if (sym->char_at(0) == JVM_SIGNATURE_CLASS &&
sym->char_at(sym->utf8_length()-1) == JVM_SIGNATURE_ENDCLASS) {
// This is a name from a signature. Strip off the trimmings.
// Call recursive to keep scope of strippedsym.
TempNewSymbol strippedsym = SymbolTable::new_symbol(sym->as_utf8()+1,
sym->utf8_length()-2);
return get_klass_by_name_impl(accessing_klass, cpool, strippedsym, require_local);
}
Handle loader;
Handle domain;
if (accessing_klass != NULL) {
loader = Handle(THREAD, accessing_klass->class_loader());
domain = Handle(THREAD, accessing_klass->protection_domain());
}
Klass* found_klass;
{
ttyUnlocker ttyul; // release tty lock to avoid ordering problems
MutexLocker ml(THREAD, Compile_lock);
if (!require_local) {
found_klass = SystemDictionary::find_constrained_instance_or_array_klass(THREAD, sym, loader);
} else {
found_klass = SystemDictionary::find_instance_or_array_klass(THREAD, sym, loader, domain);
}
}
// If we fail to find an array klass, look again for its element type.
// The element type may be available either locally or via constraints.
// In either case, if we can find the element type in the system dictionary,
// we must build an array type around it. The CI requires array klasses
// to be loaded if their element klasses are loaded, except when memory
// is exhausted.
if (sym->char_at(0) == JVM_SIGNATURE_ARRAY &&
(sym->char_at(1) == JVM_SIGNATURE_ARRAY || sym->char_at(1) == JVM_SIGNATURE_CLASS)) {
// We have an unloaded array.
// Build it on the fly if the element class exists.
TempNewSymbol elem_sym = SymbolTable::new_symbol(sym->as_utf8()+1,
sym->utf8_length()-1);
// Get element Klass recursively.
Klass* elem_klass =
get_klass_by_name_impl(accessing_klass,
cpool,
elem_sym,
require_local);
if (elem_klass != NULL) {
// Now make an array for it
return elem_klass->array_klass(THREAD);
}
}
if (found_klass == NULL && !cpool.is_null() && cpool->has_preresolution()) {
// Look inside the constant pool for pre-resolved class entries.
for (int i = cpool->length() - 1; i >= 1; i--) {
if (cpool->tag_at(i).is_klass()) {
Klass* kls = cpool->resolved_klass_at(i);
--> --------------------
--> maximum size reached
--> --------------------
¤ Dauer der Verarbeitung: 0.110 Sekunden
(vorverarbeitet)
¤
|
schauen Sie vor die Tür
Fenster
Die Firma ist wie angegeben erreichbar.
Die farbliche Syntaxdarstellung ist noch experimentell.
|
|
|
|
|