Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: Tests.java   Sprache: JAVA

/*
 * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */


import java.util.function.DoubleBinaryOperator;
import java.util.function.DoubleUnaryOperator;
import java.util.function.DoubleToIntFunction;

/*
 * Shared static test methods for numerical tests.  Sharing these
 * helper test methods avoids repeated functions in the various test
 * programs.  The test methods return 1 for a test failure and 0 for
 * success.  The order of arguments to the test methods is generally
 * the test name, followed by the test arguments, the computed result,
 * and finally the expected result.
 */


public class Tests {
    private Tests(){}; // do not instantiate

    public static String toHexString(float f) {
        if (!Float.isNaN(f))
            return Float.toHexString(f);
        else
            return "NaN(0x" + Integer.toHexString(Float.floatToRawIntBits(f)) + ")";
    }

    public static String toHexString(double d) {
        if (!Double.isNaN(d))
            return Double.toHexString(d);
        else
            return "NaN(0x" + Long.toHexString(Double.doubleToRawLongBits(d)) + ")";
    }

    /**
     * Return the floating-point value next larger in magnitude.
     */

    public static double nextOut(double d) {
        if (d > 0.0)
            return Math.nextUp(d);
        else
            return -Math.nextUp(-d);
    }

    /**
     * Returns unbiased exponent of a {@code float}; for
     * subnormal values, the number is treated as if it were
     * normalized.  That is for all finite, non-zero, positive numbers
     * <i>x</i>, <code>scalb(<i>x</i>, -ilogb(<i>x</i>))</code> is
     * always in the range [1, 2).
     * <p>
     * Special cases:
     * <ul>
     * <li> If the argument is NaN, then the result is 2<sup>30</sup>.
     * <li> If the argument is infinite, then the result is 2<sup>28</sup>.
     * <li> If the argument is zero, then the result is -(2<sup>28</sup>).
     * </ul>
     *
     * @param f floating-point number whose exponent is to be extracted
     * @return unbiased exponent of the argument.
     */

    public static int ilogb(double d) {
        int exponent = Math.getExponent(d);

        switch (exponent) {
        case Double.MAX_EXPONENT+1:       // NaN or infinity
            ifDouble.isNaN(d) )
                return (1<<30);         // 2^30
            else // infinite value
                return (1<<28);         // 2^28

        case Double.MIN_EXPONENT-1:       // zero or subnormal
            if(d == 0.0) {
                return -(1<<28);        // -(2^28)
            }
            else {
                long transducer = Double.doubleToRawLongBits(d);

                /*
                 * To avoid causing slow arithmetic on subnormals,
                 * the scaling to determine when d's significand
                 * is normalized is done in integer arithmetic.
                 * (there must be at least one "1" bit in the
                 * significand since zero has been screened out.
                 */


                // isolate significand bits
                transducer &= DoubleConsts.SIGNIF_BIT_MASK;
                assert(transducer != 0L);

                // This loop is simple and functional. We might be
                // able to do something more clever that was faster;
                // e.g. number of leading zero detection on
                // (transducer << (# exponent and sign bits).
                while (transducer <
                       (1L << (DoubleConsts.SIGNIFICAND_WIDTH - 1))) {
                    transducer *= 2;
                    exponent--;
                }
                exponent++;
                assert( exponent >=
                        Double.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1) &&
                        exponent < Double.MIN_EXPONENT);
                return exponent;
            }

        default:
            assert( exponent >= Double.MIN_EXPONENT &&
                    exponent <= Double.MAX_EXPONENT);
            return exponent;
        }
    }

    /**
     * Returns unbiased exponent of a {@code float}; for
     * subnormal values, the number is treated as if it were
     * normalized.  That is for all finite, non-zero, positive numbers
     * <i>x</i>, <code>scalb(<i>x</i>, -ilogb(<i>x</i>))</code> is
     * always in the range [1, 2).
     * <p>
     * Special cases:
     * <ul>
     * <li> If the argument is NaN, then the result is 2<sup>30</sup>.
     * <li> If the argument is infinite, then the result is 2<sup>28</sup>.
     * <li> If the argument is zero, then the result is -(2<sup>28</sup>).
     * </ul>
     *
     * @param f floating-point number whose exponent is to be extracted
     * @return unbiased exponent of the argument.
     */

     public static int ilogb(float f) {
        int exponent = Math.getExponent(f);

        switch (exponent) {
        case Float.MAX_EXPONENT+1:        // NaN or infinity
            ifFloat.isNaN(f) )
                return (1<<30);         // 2^30
            else // infinite value
                return (1<<28);         // 2^28

        case Float.MIN_EXPONENT-1:        // zero or subnormal
            if(f == 0.0f) {
                return -(1<<28);        // -(2^28)
            }
            else {
                int transducer = Float.floatToRawIntBits(f);

                /*
                 * To avoid causing slow arithmetic on subnormals,
                 * the scaling to determine when f's significand
                 * is normalized is done in integer arithmetic.
                 * (there must be at least one "1" bit in the
                 * significand since zero has been screened out.
                 */


                // isolate significand bits
                transducer &= FloatConsts.SIGNIF_BIT_MASK;
                assert(transducer != 0);

                // This loop is simple and functional. We might be
                // able to do something more clever that was faster;
                // e.g. number of leading zero detection on
                // (transducer << (# exponent and sign bits).
                while (transducer <
                       (1 << (FloatConsts.SIGNIFICAND_WIDTH - 1))) {
                    transducer *= 2;
                    exponent--;
                }
                exponent++;
                assert( exponent >=
                        Float.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1) &&
                        exponent < Float.MIN_EXPONENT);
                return exponent;
            }

        default:
            assert( exponent >= Float.MIN_EXPONENT &&
                    exponent <= Float.MAX_EXPONENT);
            return exponent;
        }
    }

    /**
     * Returns {@code true} if the unordered relation holds
     * between the two arguments.  When two floating-point values are
     * unordered, one value is neither less than, equal to, nor
     * greater than the other.  For the unordered relation to be true,
     * at least one argument must be a {@code NaN}.
     *
     * @param arg1      the first argument
     * @param arg2      the second argument
     * @return {@code true} if at least one argument is a NaN,
     * {@code false} otherwise.
     */

     public static boolean isUnordered(float arg1, float arg2) {
        return Float.isNaN(arg1) || Float.isNaN(arg2);
    }

    /**
     * Returns {@code true} if the unordered relation holds
     * between the two arguments.  When two floating-point values are
     * unordered, one value is neither less than, equal to, nor
     * greater than the other.  For the unordered relation to be true,
     * at least one argument must be a {@code NaN}.
     *
     * @param arg1      the first argument
     * @param arg2      the second argument
     * @return {@code true} if at least one argument is a NaN,
     * {@code false} otherwise.
     */

    public static boolean isUnordered(double arg1, double arg2) {
        return Double.isNaN(arg1) || Double.isNaN(arg2);
    }

    public static int test(String testName, float input,
                           boolean result, boolean expected) {
        if (expected != result) {
            System.err.println("Failure for " + testName + ":\n" +
                               "\tFor input " + input    + "\t(" + toHexString(input) + ")\n" +
                               "\texpected " + expected + "\n"  +
                               "\tgot " + result   + ").");
            return 1;
        } else {
            return 0;
        }
    }

    public static int test(String testName, double input,
                           boolean result, boolean expected) {
        if (expected != result) {
            System.err.println("Failure for " + testName + ":\n" +
                               "\tFor input " + input    + "\t(" + toHexString(input) + ")\n" +
                               "\texpected " + expected + "\n"  +
                               "\tgot " + result   + ").");
            return 1;
        } else {
            return 0;
        }
    }

    public static int test(String testName, float input1, float input2,
                           boolean result, boolean expected) {
        if (expected != result) {
            System.err.println("Failure for "  + testName + ":\n" +
                               "\tFor inputs " + input1   + "\t(" + toHexString(input1) + ") and "
                                               + input2   + "\t(" + toHexString(input2) + ")\n" +
                               "\texpected "  + expected + "\n"  +
                               "\tgot "  + result   + ").");
            return 1;
        }
        return 0;
    }

    public static int test(String testName, double input1, double input2,
                           boolean result, boolean expected) {
        if (expected != result) {
            System.err.println("Failure for "  + testName + ":\n" +
                               "\tFor inputs " + input1   + "\t(" + toHexString(input1) + ") and "
                                               + input2   + "\t(" + toHexString(input2) + ")\n" +
                               "\texpected "  + expected + "\n"  +
                               "\tgot "  + result   + ").");
            return 1;
        }
        return 0;
    }

    public static int test(String testName, float input,
                           int result, int expected) {
        if (expected != result) {
            System.err.println("Failure for " + testName + ":\n" +
                               "\tFor input " + input    + "\t(" + toHexString(input) + ")\n" +
                               "\texpected " + expected + "\n" +
                               "\tgot " + result    + ").");
            return 1;
        }
        return 0;
    }

    public static int test(String testName,
                           double input,
                           DoubleToIntFunction func,
                           int expected) {
        return test(testName, input, func.applyAsInt(input), expected);
    }

    public  static int test(String testName, double input,
                            int result, int expected) {
        if (expected != result) {
            System.err.println("Failure for " + testName + ":\n" +
                               "\tFor input " + input    + "\t(" + toHexString(input) + ")\n" +
                               "\texpected " + expected + "\n"  +
                               "\tgot " + result   + ").");
            return 1;
        } else {
            return 0;
        }
    }

    public static int test(String testName, float input,
                           float result, float expected) {
        if (Float.compare(expected, result) != 0 ) {
            System.err.println("Failure for " + testName + ":\n" +
                               "\tFor input " + input    + "\t(" + toHexString(input) + ")\n" +
                               "\texpected " + expected + "\t(" + toHexString(expected) + ")\n" +
                               "\tgot " + result   + "\t(" + toHexString(result) + ").");
            return 1;
        } else {
            return 0;
        }
    }

    public static int test(String testName,
                           double input,
                           DoubleUnaryOperator func,
                           double expected) {
        return test(testName, input, func.applyAsDouble(input), expected);
    }

    public static int test(String testName, double input,
                           double result, double expected) {
        if (Double.compare(expected, result ) != 0) {
            System.err.println("Failure for " + testName + ":\n" +
                               "\tFor input " + input    + "\t(" + toHexString(input) + ")\n" +
                               "\texpected " + expected + "\t(" + toHexString(expected) + ")\n" +
                               "\tgot " + result   + "\t(" + toHexString(result) + ").");
            return 1;
        } else {
            return 0;
        }
    }

    public static int test(String testName,
                           float input1, double input2,
                           float result, float expected) {
        if (Float.compare(expected, result ) != 0) {
            System.err.println("Failure for "  + testName + ":\n" +
                               "\tFor inputs " + input1   + "\t(" + toHexString(input1) + ") and "
                                               + input2   + "\t(" + toHexString(input2) + ")\n" +
                               "\texpected "  + expected + "\t(" + toHexString(expected) + ")\n" +
                               "\tgot "  + result   + "\t(" + toHexString(result) + ").");
            return 1;
        } else {
            return 0;
        }
    }

    public static int test(String testName,
                           double input1, double input2,
                           DoubleBinaryOperator func,
                           double expected) {
        return test(testName, input1, input2, func.applyAsDouble(input1, input2), expected);
    }

    public static int test(String testName,
                           double input1, double input2,
                           double result, double expected) {
        if (Double.compare(expected, result ) != 0) {
            System.err.println("Failure for "  + testName + ":\n" +
                               "\tFor inputs " + input1   + "\t(" + toHexString(input1) + ") and "
                                               + input2   + "\t(" + toHexString(input2) + ")\n" +
                               "\texpected "  + expected + "\t(" + toHexString(expected) + ")\n" +
                               "\tgot "  + result   + "\t(" + toHexString(result) + ").");
            return 1;
        } else {
            return 0;
        }
    }

    public static int test(String testName,
                           float input1, int input2,
                           float result, float expected) {
        if (Float.compare(expected, result ) != 0) {
            System.err.println("Failure for "  + testName + ":\n" +
                               "\tFor inputs " + input1   + "\t(" + toHexString(input1) + ") and "
                                               + input2   + "\n"  +
                               "\texpected "  + expected + "\t(" + toHexString(expected) + ")\n" +
                               "\tgot "  + result   + "\t(" + toHexString(result) + ").");
            return 1;
        } else {
            return 0;
        }
    }

    public static int test(String testName,
                           double input1, int input2,
                           double result, double expected) {
        if (Double.compare(expected, result ) != 0) {
            System.err.println("Failure for "  + testName + ":\n" +
                               "\tFor inputs " + input1   + "\t(" + toHexString(input1) + ") and "
                                               + input2   + "\n"  +
                               "\texpected "  + expected + "\t(" + toHexString(expected) + ")\n" +
                               "\tgot "  + result   + "\t(" + toHexString(result) + ").");
            return 1;
        } else {
            return 0;
        }
    }

    public static int test(String testName,
                           float input1, float input2, float input3,
                           float result, float expected) {
        if (Float.compare(expected, result ) != 0) {
            System.err.println("Failure for "  + testName + ":\n" +
                               "\tFor inputs " + input1   + "\t(" + toHexString(input1) + ") and "
                                               + input2   + "\t(" + toHexString(input2) + ") and"
                                               + input3   + "\t(" + toHexString(input3) + ")\n"  +
                               "\texpected "  + expected + "\t(" + toHexString(expected) + ")\n" +
                               "\tgot "  + result   + "\t(" + toHexString(result) + ").");
            return 1;
        } else {
            return 0;
        }
    }

    @FunctionalInterface
    public interface DoubleTernaryOperator {
        double applyAsDouble(double input1, double input2, double input3);
    }

    public static int test(String testName,
                           double input1, double input2, double input3,
                           DoubleTernaryOperator func, double expected) {
        return test(testName, input1, input2, input3, func.applyAsDouble(input1, input2, input3), expected);

    }

    public static int test(String testName,
                           double input1, double input2, double input3,
                           double result, double expected) {
        if (Double.compare(expected, result ) != 0) {
            System.err.println("Failure for "  + testName + ":\n" +
                               "\tFor inputs " + input1   + "\t(" + toHexString(input1) + ") and "
                                               + input2   + "\t(" + toHexString(input2) + ") and"
                                               + input3   + "\t(" + toHexString(input3) + ")\n"  +
                               "\texpected "  + expected + "\t(" + toHexString(expected) + ")\n" +
                               "\tgot "  + result   + "\t(" + toHexString(result) + ").");
            return 1;
        } else {
            return 0;
        }
    }

    static int testUlpCore(double result, double expected, double ulps) {
        // We assume we won't be unlucky and have an inexact expected
        // be nextDown(2^i) when 2^i would be the correctly rounded
        // answer.  This would cause the ulp size to be half as large
        // as it should be, doubling the measured error).

        if (Double.compare(expected, result) == 0) {
            return 0;   // result and expected are equivalent
        } else {
            if( ulps == 0.0) {
                // Equivalent results required but not found
                return 1;
            } else {
                double difference = expected - result;
                if (isUnordered(expected, result) ||
                    Double.isNaN(difference) ||
                    // fail if greater than or unordered
                    !(Math.abs( difference/Math.ulp(expected) ) <= Math.abs(ulps)) ) {
                    return 1;
                } else {
                    return 0;
                }
            }
        }
    }

    // One input argument.
    public static int testUlpDiff(String testName, double input,
                                  DoubleUnaryOperator func, double expected, double ulps) {
        return testUlpDiff(testName, input, func.applyAsDouble(input), expected, ulps);
    }

    public static int testUlpDiff(String testName, double input,
                                  double result, double expected, double ulps) {
        int code = testUlpCore(result, expected, ulps);
        if (code == 1) {
            System.err.println("Failure for " + testName + ":\n" +
                               "\tFor input " + input    + "\t(" + toHexString(input) + ")\n" +
                               "\texpected " + expected + "\t(" + toHexString(expected) + ")\n" +
                               "\tgot " + result   + "\t(" + toHexString(result) + ");\n" +
                               "\tdifference greater than ulp tolerance " + ulps);
        }
        return code;
    }

    // Two input arguments.
    public static int testUlpDiff(String testName, double input1, double input2,
                                  DoubleBinaryOperator func, double expected, double ulps) {
        return testUlpDiff(testName, input1, input2, func.applyAsDouble(input1, input2), expected, ulps);
    }

    public static int testUlpDiff(String testName, double input1, double input2,
                                  double result, double expected, double ulps) {
        int code = testUlpCore(result, expected, ulps);
        if (code == 1) {
            System.err.println("Failure for "  + testName + ":\n" +
                               "\tFor inputs " + input1   + "\t(" + toHexString(input1) + ") and "
                                               + input2   + "\t(" + toHexString(input2) + ")\n" +
                               "\texpected "  + expected + "\t(" + toHexString(expected) + ")\n" +
                               "\tgot "  + result   + "\t(" + toHexString(result) + ");\n" +
                               "\tdifference greater than ulp tolerance " + ulps);
        }
        return code;
    }

    // For a successful test, the result must be within the ulp bound of
    // expected AND the result must have absolute value less than or
    // equal to absBound.
    public static int testUlpDiffWithAbsBound(String testName, double input,
                                              DoubleUnaryOperator func, double expected,
                                              double ulps, double absBound) {
        return testUlpDiffWithAbsBound(testName, input,
                                       func.applyAsDouble(input), expected,
                                       ulps, absBound);
    }

    public static int testUlpDiffWithAbsBound(String testName, double input,
                                              double result, double expected,
                                              double ulps, double absBound) {
        int code = 0;   // return code value

        if (!(StrictMath.abs(result) <= StrictMath.abs(absBound)) &&
            !Double.isNaN(expected)) {
            code = 1;
        } else
            code = testUlpCore(result, expected, ulps);

        if (code == 1) {
            System.err.println("Failure for " + testName + ":\n" +
                               "\tFor input " + input    + "\t(" + toHexString(input) + ")\n" +
                               "\texpected " + expected + "\t(" + toHexString(expected) + ")\n" +
                               "\tgot " + result   + "\t(" + toHexString(result) + ");\n" +
                               "\tdifference greater than ulp tolerance " + ulps +
                               " or the result has larger magnitude than " + absBound);
        }
        return code;
    }

    // For a successful test, the result must be within the ulp bound of
    // expected AND the result must have absolute value greater than
    // or equal to the lowerBound.
    public static int testUlpDiffWithLowerBound(String testName, double input,
                                                DoubleUnaryOperator func, double expected,
                                                double ulps, double lowerBound) {
        return testUlpDiffWithLowerBound(testName, input,
                                         func.applyAsDouble(input), expected,
                                         ulps, lowerBound);
    }

    public static int testUlpDiffWithLowerBound(String testName, double input,
                                                double result, double expected,
                                                double ulps, double lowerBound) {
        int code = 0;   // return code value

        if (!(result >= lowerBound) && !Double.isNaN(expected)) {
            code = 1;
        } else {
            code = testUlpCore(result, expected, ulps);
        }

        if (code == 1) {
            System.err.println("Failure for " + testName +
                               ":\n" +
                               "\tFor input "   + input    + "\t(" + toHexString(input) + ")" +
                               "\n\texpected " + expected + "\t(" + toHexString(expected) + ")" +
                               "\n\tgot " + result   + "\t(" + toHexString(result) + ");" +
                               "\ndifference greater than ulp tolerance " + ulps +
                               " or result not greater than or equal to the bound " + lowerBound);
        }
        return code;
    }

    public static int testTolerance(String testName, double input,
                                    DoubleUnaryOperator func, double expected, double tolerance) {
        return testTolerance(testName, input, func.applyAsDouble(input), expected, tolerance);

    }
    public static int testTolerance(String testName, double input,
                                    double result, double expected, double tolerance) {
        if (Double.compare(expected, result ) != 0) {
            double difference = expected - result;
            if (isUnordered(expected, result) ||
                Double.isNaN(difference) ||
                // fail if greater than or unordered
                !(Math.abs((difference)/expected) <= StrictMath.pow(10, -tolerance)) ) {
                System.err.println("Failure for " + testName + ":\n" +
                                   "\tFor input " + input    + "\t(" + toHexString(input) + ")\n" +
                                   "\texpected " + expected + "\t(" + toHexString(expected) + ")\n" +
                                   "\tgot " + result   + "\t(" + toHexString(result) + ");\n" +
                                   "\tdifference greater than tolerance 10^-" + tolerance);
                return 1;
            }
            return 0;
        } else {
            return 0;
        }
    }

    // For a successful test, the result must be within the upper and
    // lower bounds.
    public static int testBounds(String testName, double input, DoubleUnaryOperator func,
                                 double bound1, double bound2) {
        return testBounds(testName, input, func.applyAsDouble(input), bound1, bound2);
    }

    public static int testBounds(String testName, double input, double result,
                                 double bound1, double bound2) {
        if ((result >= bound1 && result <= bound2) ||
            (result <= bound1 && result >= bound2))
            return 0;
        else {
            double lowerBound = Math.min(bound1, bound2);
            double upperBound = Math.max(bound1, bound2);
            System.err.println("Failure for " + testName + ":\n" +
                               "\tFor input " + input    + "\t(" + toHexString(input) + ")\n" +
                               "\tgot " + result   + "\t(" + toHexString(result) + ");\n" +
                               "\toutside of range\n" +
                               "\t[" + lowerBound    + "\t(" + toHexString(lowerBound) + "), " +
                               upperBound    + "\t(" + toHexString(upperBound) + ")]");
            return 1;
        }
    }
}

¤ Dauer der Verarbeitung: 0.78 Sekunden  (vorverarbeitet)  ¤





Download des
Quellennavigators
Download des
sprechenden Kalenders

in der Quellcodebibliothek suchen




Haftungshinweis

Die Informationen auf dieser Webseite wurden nach bestem Wissen sorgfältig zusammengestellt. Es wird jedoch weder Vollständigkeit, noch Richtigkeit, noch Qualität der bereit gestellten Informationen zugesichert.


Bemerkung:

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff



                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....
    

Besucherstatistik

Besucherstatistik