Anforderungen  |   Konzepte  |   Entwurf  |   Entwicklung  |   Qualitätssicherung  |   Lebenszyklus  |   Steuerung
 
 
 
 


Quellcode-Bibliothek

© Kompilation durch diese Firma

[Weder Korrektheit noch Funktionsfähigkeit der Software werden zugesichert.]

Datei: subset_chain.pvs   Sprache: PVS

Original von: PVS©


%%-------------------** Group Action and Class Equation **-------------------
%%                                                                          
%% Author          : André Luiz Galdino 
%%                   Universidade Federal de Goiás - Brasil
%%                    
%% Last Modified On: November 28, 2011
%%                                                                          
%%---------------------------------------------------------------------------


group_action[T: TYPE, *: [T,T -> T], one: T, T1: TYPE]: THEORY

BEGIN
  
     ASSUMING IMPORTING algebra@group_def[T,*,one]

       fullset_is_group: ASSUMPTION group?(fullset[T])

   ENDASSUMING


   IMPORTING algebra@group[T,*,one],
             algebra@factor_groups[T,*,one],
             lagrange_index[T,*,one],
             class_equation_scaf[set[T1],T1],
             groups_scaf


    G, H, K: VAR group[T,*,one]
       X, Y: VAR set[T1]
          p: VAR posnat
          n: VAR nat
     F(G,X): TYPE = [(G), (X) -> (X)]


%%%%% Definitions %%%%

   group_action?(G, X)(f:F(G,X)): bool = FORALL (g1, g2:(G), x: (X)):   
                             f(one, x) = x AND f(g1 * g2, x) = f(g1, f(g2, x))

   stabilizer(G,X)(f: F(G,X), x: (X)): {S: set[T] | subset?(S,G)} = {g:(G) | f(g,x) = x}


   orbit(G,X)(f: F(G,X), x: (X)): {Y: set[T1] | subset?(Y,X)} = {y:(X) | EXISTS (g:(G)): y = f(g, x)}


   orbits(G,X)(f: F(G,X)): setofsets[T1] = {Y: set[T1] | EXISTS (x:(X)): Y = orbit(G,X)(f,x)}

   
   Fix(G,X)(f: F(G,X)): {Y: set[T1] | subset?(Y,X)} = {x:(X) | FORALL (g:(G)): f(g, x) = x}


   orbits_nFix(G,X)(f: F(G,X)): setofsets[T1] = {Y: (orbits(G,X)(f)) | 
                                     EXISTS (x: {x:(X) | NOT member(x, Fix(G,X)(f))}): Y = orbit(G,X)(f,x)}

%%%%% Properties and results %%%%

   stabilizer_is_subgroup: LEMMA FORALL (x:(X), f:F(G,X)): 
                              group_action?(G, X)(f) IMPLIES subgroup?(stabilizer(G,X)(f, x), G)


   singleton_iff_Fix: LEMMA FORALL (x:(X), f:F(G,X)): 
                         group_action?(G, X)(f)
                            IMPLIES
                              (orbit(G,X)(f,x) = singleton(x) IFF member(x, Fix(G,X)(f)))

   empty_iff_eq_Fix: LEMMA FORALL (f:F(G,X)): 
                              group_action?(G, X)(f)
                                 IMPLIES
                                    (empty?(orbits_nFix(G,X)(f)) IFF X = Fix(G,X)(f))

   orbits_nFix_disj_Fix: LEMMA FORALL (f:F(G,X)): 
                            group_action?(G, X)(f) 
                               IMPLIES disjoint?(Fix(G,X)(f),Union(orbits_nFix(G,X)(f)))


   orbits_is_union: LEMMA FORALL (f:F(G,X)): 
                       group_action?(G, X)(f) 
                          IMPLIES Union(orbits(G,X)(f)) = union(Fix(G,X)(f), Union(orbits_nFix(G,X)(f)))

   orbit_nonempty: LEMMA FORALL (x:(X), f:F(G,X)): 
                      group_action?(G, X)(f) IMPLIES nonempty?(orbit(G,X)(f,x))

   orbits_nonempty: LEMMA FORALL (f:F(G,X)): nonempty?(X) AND group_action?(G, X)(f) 
                             IMPLIES nonempty?(orbits(G,X)(f))

   set_orbits_is: LEMMA FORALL (f:F(G,X)): group_action?(G, X)(f) 
                          IMPLIES Union(orbits(G,X)(f)) = X

   orbit_is_finite: LEMMA FORALL (x:(X), f:F(G,X)):
                            is_finite(X) AND group_action?(G, X)(f)
                               IMPLIES
                                  is_finite(orbit(G,X)(f,x))

   orbits_disjoint: LEMMA FORALL (f:F(G,X), A,B: (orbits(G,X)(f))):
                             group_action?(G, X)(f)
                                IMPLIES 
                                   A = B OR disjoint?(A,B)

   orbits_partition: LEMMA  FORALL (f:F(G,X)): 
                              is_finite(X) AND group_action?(G, X)(f) 
                                IMPLIES
                                   finite_partition?(orbits(G,X)(f))

   orbits_nFix_partition: LEMMA FORALL (f:F(G,X)): 
                                   is_finite(X) AND group_action?(G, X)(f) 
                                      IMPLIES
                                         finite_partition?(orbits_nFix(G,X)(f))

   orbits_eq_index_aux: LEMMA 
      FORALL (x:(X), f:F(G,X)): group_action?(G, X)(f) 
        IMPLIES
          EXISTS (f:[(left_cosets(G,stabilizer(G,X)(f, x))) -> (orbit(G,X)(f,x))]): bijective?(f)

   orbits_eq_index: LEMMA FORALL (G:finite_group, x:(X), f:F(G,X)):
                         is_finite(X) AND group_action?(G, X)(f)
                            IMPLIES
                              index(G, stabilizer(G,X)(f, x)) = card(orbit(G,X)(f,x))


%%%%% Class Equation %%%%%%%%%%%%%%%%%%%%%%%%

%                 ----
%  sigma(X, f) =  \     f(x)
%                 /
%                 ----
%              member(x,X)


   counting_formula: LEMMA FORALL (f:F(G,X)):
                             finite_group?(G) AND is_finite(X) AND 
                             nonempty?(X)     AND group_action?(G, X)(f)
                                IMPLIES
                                  card(X) = sigma_set.sigma(orbits(G,X)(f), card)

   class_equation: LEMMA FORALL (f:F(G,X)):
                            finite_group?(G) AND is_finite(X) AND 
                            nonempty?(X)     AND group_action?(G, X)(f)
                               IMPLIES 
                                  card(X) = card(Fix(G,X)(f)) + sigma_set.sigma(orbits_nFix(G,X)(f), card)

   Fix_congruence: LEMMA FORALL (f:F(G,X)):
                            finite_group?(G) AND order(G) = p^n AND 
                            is_finite(X)     AND nonempty?(X)   AND 
                            prime?(p)        AND group_action?(G, X)(f)
                              IMPLIES 
                                 divides(p, card(X) - card(Fix(G,X)(f)))


 
END group_action

¤ Dauer der Verarbeitung: 0.20 Sekunden  (vorverarbeitet)  ¤





Kontakt
Drucken
Kontakt
sprechenden Kalenders

Eigene Datei ansehen




schauen Sie vor die Tür

Fenster


Die Firma ist wie angegeben erreichbar.

Die farbliche Syntaxdarstellung ist noch experimentell.


Bot Zugriff



                                                                                                                                                                                                                                                                                                                                                                                                     


Neuigkeiten

     Aktuelles
     Motto des Tages

Software

     Produkte
     Quellcodebibliothek

Aktivitäten

     Artikel über Sicherheit
     Anleitung zur Aktivierung von SSL

Muße

     Gedichte
     Musik
     Bilder

Jenseits des Üblichen ....

Besucherstatistik

Besucherstatistik